BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 17407114)

  • 1. Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation?
    Jhung SH; Jin T; Hwang YK; Chang JS
    Chemistry; 2007; 13(16):4410-7. PubMed ID: 17407114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave synthesis of zeolites. 2. Effect of vessel size, precursor volume, and irradiation method.
    Panzarella B; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2007 Nov; 111(44):12657-67. PubMed ID: 17939703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study.
    Haque E; Khan NA; Park JH; Jhung SH
    Chemistry; 2010 Jan; 16(3):1046-52. PubMed ID: 20014080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses.
    Khan NA; Haque E; Jhung SH
    Phys Chem Chem Phys; 2010 Mar; 12(11):2625-31. PubMed ID: 20200739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heating behavior and crystal growth mechanism in microwave field.
    Yang G; Kong Y; Hou W; Yan Q
    J Phys Chem B; 2005 Feb; 109(4):1371-9. PubMed ID: 16851105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.
    Panzarella B; Tompsett G; Conner WC; Jones K
    Chemphyschem; 2007 Feb; 8(3):357-69. PubMed ID: 17253593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser control of zeolite nucleation.
    Navarro M; Mayoral A; Mateo E; Lahoz R; de la Fuente GF; Coronas J
    Chemphyschem; 2012 Feb; 13(3):736-40. PubMed ID: 22266775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave synthesis of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization.
    Jhung SH; Lee JH; Forster PM; Férey G; Cheetham AK; Chang JS
    Chemistry; 2006 Oct; 12(30):7899-905. PubMed ID: 16871506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave synthesis of SAPO-11 and AlPO-11: aspects of reactor engineering.
    Gharibeh M; Tompsett GA; Conner WC; Yngvesson KS
    Chemphyschem; 2008 Dec; 9(17):2580-91. PubMed ID: 19034925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted green synthesis of silver nanostructures.
    Nadagouda MN; Speth TF; Varma RS
    Acc Chem Res; 2011 Jul; 44(7):469-78. PubMed ID: 21526846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation.
    Xing R; Liu S; Yu H; Guo Z; Wang P; Li C; Li Z; Li P
    Carbohydr Res; 2005 Sep; 340(13):2150-3. PubMed ID: 16040021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system.
    Doolittle JW; Dutta PK
    Langmuir; 2006 May; 22(10):4825-31. PubMed ID: 16649802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave assisted synthesis and solid-state characterization of lithocholyl amides of isomeric aminopyridines.
    Ahonen KV; Lahtinen MK; Valkonen AM; Dracínský M; Kolehmainen ET
    Steroids; 2011 Feb; 76(3):261-8. PubMed ID: 21130795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol.
    Bilecka I; Elser P; Niederberger M
    ACS Nano; 2009 Feb; 3(2):467-77. PubMed ID: 19236087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted synthesis of metallic nanostructures in solution.
    Tsuji M; Hashimoto M; Nishizawa Y; Kubokawa M; Tsuji T
    Chemistry; 2005 Jan; 11(2):440-52. PubMed ID: 15515072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-thermal microwave effects on protein dynamics? An X-ray diffraction study on tetragonal lysozyme crystals.
    Weissenborn R; Diederichs K; Welte W; Maret G; Gisler T
    Acta Crystallogr D Biol Crystallogr; 2005 Feb; 61(Pt 2):163-72. PubMed ID: 15681867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave synthesis of zeolites: effect of power delivery.
    Gharibeh M; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Jul; 113(26):8930-40. PubMed ID: 19514706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave synthesis of metallosilicate zeolites with fibrous morphology.
    Hwang YK; Jin T; Kim JM; Kwon YU; Park SE; Chang JS
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1786-91. PubMed ID: 17025084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions.
    He H; Yang S; Yu K; Ju Y; Sun C; Wang L
    J Hazard Mater; 2010 Jan; 173(1-3):393-400. PubMed ID: 19748731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.