BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17407177)

  • 1. Enhancement of proteolysis through the silica-gel-derived microfluidic reactor.
    Liu Y; Qu H; Xue Y; Wu Z; Yang P; Liu B
    Proteomics; 2007 May; 7(9):1373-8. PubMed ID: 17407177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres.
    Li Y; Yan B; Deng C; Yu W; Xu X; Yang P; Zhang X
    Proteomics; 2007 Jul; 7(14):2330-9. PubMed ID: 17570518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres.
    Lin S; Yao G; Qi D; Li Y; Deng C; Yang P; Zhang X
    Anal Chem; 2008 May; 80(10):3655-65. PubMed ID: 18407620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.
    Lin S; Lin Z; Yao G; Deng C; Yang P; Zhang X
    Rapid Commun Mass Spectrom; 2007; 21(23):3910-8. PubMed ID: 17990248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-column tryptic mapping of proteins using metal-ion-chelated magnetic silica microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Li Y; Yan B; Xu X; Deng C; Yang P; Shen X; Zhang X
    Rapid Commun Mass Spectrom; 2007; 21(14):2263-8. PubMed ID: 17577873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypsin entrapped in poly(diallyldimethylammonium chloride) silica sol-gel microreactor coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Xu X; Wang X; Liu Y; Liu B; Wu H; Yang P
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1257-64. PubMed ID: 18383213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance.
    Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H
    Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity.
    Ma J; Liang Z; Qiao X; Deng Q; Tao D; Zhang L; Zhang Y
    Anal Chem; 2008 Apr; 80(8):2949-56. PubMed ID: 18333626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic chips for mass spectrometry-based proteomics.
    Lee J; Soper SA; Murray KK
    J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subfemtomole level protein sequencing by Edman degradation carried out in a microfluidic chip.
    Chen W; Yin X; Mu J; Yin Y
    Chem Commun (Camb); 2007 Jun; (24):2488-90. PubMed ID: 17563805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid protein identification using monolithic enzymatic microreactor and LC-ESI-MS/MS.
    Duan J; Liang Z; Yang C; Zhang J; Zhang L; Zhang W; Zhang Y
    Proteomics; 2006 Jan; 6(2):412-9. PubMed ID: 16342240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated microfluidic chip for the analysis of biochemical reactions by MALDI mass spectrometry.
    Lee SH; Lee CS; Kim BG; Kim YK
    Biomed Microdevices; 2008 Feb; 10(1):1-9. PubMed ID: 17610068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a temperature-controllable microreactor to simple and rapid protein identification using MALDI-TOF MS.
    Sim TS; Kim EM; Joo HS; Kim BG; Kim YK
    Lab Chip; 2006 Aug; 6(8):1056-61. PubMed ID: 16874378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospray interfacing of polymer microfluidics to MALDI-MS.
    Wang YX; Zhou Y; Balgley BM; Cooper JW; Lee CS; DeVoe DL
    Electrophoresis; 2005 Oct; 26(19):3631-40. PubMed ID: 16136528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflation bulb-driven microfluidic reactor for infrared-assisted proteolysis.
    Liu T; Bao H; Chen G
    Electrophoresis; 2010 Sep; 31(18):3070-3. PubMed ID: 20725916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of efficient proteolysis by trypsin loaded macroporous silica.
    Guo W; Bi H; Qiao L; Wan J; Qian K; Girault HH; Liu B
    Mol Biosyst; 2011 Oct; 7(10):2890-8. PubMed ID: 21804973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors.
    Ji J; Zhang Y; Zhou X; Kong J; Tang Y; Liu B
    Anal Chem; 2008 Apr; 80(7):2457-63. PubMed ID: 18321132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.
    Hu X; Dong Y; He Q; Chen H; Zhu Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():96-103. PubMed ID: 25864010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip tryptic digest with direct coupling to ESI-MS using magnetic particles.
    Le Nel A; Krenkova J; Kleparnik K; Smadja C; Taverna M; Viovy JL; Foret F
    Electrophoresis; 2008 Dec; 29(24):4944-7. PubMed ID: 19025861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J; Hou C; Liang Y; Wang T; Liang Z; Zhang L; Zhang Y
    Proteomics; 2011 Mar; 11(5):991-5. PubMed ID: 21280225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.