These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17407179)

  • 1. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants.
    Li K; Xu C; Zhang K; Yang A; Zhang J
    Proteomics; 2007 May; 7(9):1501-12. PubMed ID: 17407179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1.
    Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F
    Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation.
    Liu Y; von Behrens I; Muthreich N; Schütz W; Nordheim A; Hochholdinger F
    Eur J Cell Biol; 2010; 89(2-3):236-41. PubMed ID: 19962783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analyses provide new insights into the responses of Pinus massoniana seedlings to phosphorus deficiency.
    Fan F; Ding G; Wen X
    Proteomics; 2016 Feb; 16(3):504-15. PubMed ID: 26603831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.).
    Hochholdinger F; Woll K; Guo L; Schnable PS
    Proteomics; 2005 Dec; 5(18):4885-93. PubMed ID: 16247731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation.
    Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F
    Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity.
    Requejo R; Tena M
    Phytochemistry; 2005 Jul; 66(13):1519-28. PubMed ID: 15964037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean.
    Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH
    Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mucilage proteome of maize (Zea mays L.) primary roots.
    Ma W; Muthreich N; Liao C; Franz-Wachtel M; Schütz W; Zhang F; Hochholdinger F; Li C
    J Proteome Res; 2010 Jun; 9(6):2968-76. PubMed ID: 20408568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New changes in the plasma-membrane-associated proteome of rice roots under salt stress.
    Cheng Y; Qi Y; Zhu Q; Chen X; Wang N; Zhao X; Chen H; Cui X; Xu L; Zhang W
    Proteomics; 2009 Jun; 9(11):3100-14. PubMed ID: 19526560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents.
    Song X; Ni Z; Yao Y; Xie C; Li Z; Wu H; Zhang Y; Sun Q
    Proteomics; 2007 Oct; 7(19):3538-57. PubMed ID: 17722204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection.
    Li K; Xu C; Zhang J
    Gene; 2011 Oct; 485(2):106-13. PubMed ID: 21708230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of root library by SSH and preliminary analysis of genes responsible for phosphorus deficiency in maize.
    Huang Q; Gao SB; Zhang ZM; Lin HJ; Pan GT; Yang KC; Rong TZ
    Genetika; 2010 Dec; 46(12):1619-25. PubMed ID: 21428250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.).
    Li K; Xu C; Fan W; Zhang H; Hou J; Yang A; Zhang K
    Plant Physiol Biochem; 2014 Oct; 83():232-42. PubMed ID: 25190054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses.
    Yamaguchi M; Sharp RE
    Plant Cell Environ; 2010 Apr; 33(4):590-603. PubMed ID: 19895398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.