These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17407266)

  • 1. Identification of acceptor substrate binding subsites +2 and +3 in the amylomaltase from Thermus thermophilus HB8.
    Kaper T; Leemhuis H; Uitdehaag JC; van der Veen BA; Dijkstra BW; van der Maarel MJ; Dijkhuizen L
    Biochemistry; 2007 May; 46(17):5261-9. PubMed ID: 17407266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unique glycoside hydrolase family 77 amylomaltase from Borrelia burgdorferi with only catalytic triad conserved.
    Godány A; Vidová B; Janecek S
    FEMS Microbiol Lett; 2008 Jul; 284(1):84-91. PubMed ID: 18494783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of amylomaltase from thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans.
    Przylas I; Tomoo K; Terada Y; Takaha T; Fujii K; Saenger W; Sträter N
    J Mol Biol; 2000 Feb; 296(3):873-86. PubMed ID: 10677288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus.
    Jung JH; Jung TY; Seo DH; Yoon SM; Choi HC; Park BC; Park CS; Woo EJ
    Proteins; 2011 Feb; 79(2):633-44. PubMed ID: 21117235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria.
    Kuchtová A; Janeček Š
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1260-8. PubMed ID: 26006747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the key active subsites of glycoside hydrolase 13 family members.
    Kumar V
    Carbohydr Res; 2010 May; 345(7):893-8. PubMed ID: 20227065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans.
    Przylas I; Terada Y; Fujii K; Takaha T; Saenger W; Sträter N
    Eur J Biochem; 2000 Dec; 267(23):6903-13. PubMed ID: 11082203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.
    Bozonnet S; Jensen MT; Nielsen MM; Aghajari N; Jensen MH; Kramhøft B; Willemoës M; Tranier S; Haser R; Svensson B
    FEBS J; 2007 Oct; 274(19):5055-67. PubMed ID: 17803687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of the Thermus thermophilus ADP-ribose pyrophosphatase from mutational and kinetic studies.
    Ooga T; Yoshiba S; Nakagawa N; Kuramitsu S; Masui R
    Biochemistry; 2005 Jul; 44(26):9320-9. PubMed ID: 15981998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.
    Kramhøft B; Bak-Jensen KS; Mori H; Juge N; Nøhr J; Svensson B
    Biochemistry; 2005 Feb; 44(6):1824-32. PubMed ID: 15697208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of Thermotoga maritima maltosyltransferase and its implications for the molecular basis of the novel transfer specificity.
    Roujeinikova A; Raasch C; Burke J; Baker PJ; Liebl W; Rice DW
    J Mol Biol; 2001 Sep; 312(1):119-31. PubMed ID: 11545590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of second glucan binding site including tyrosines 54 and 101 in Thermus aquaticus amylomaltase.
    Fujii K; Minagawa H; Terada Y; Takaha T; Kuriki T; Shimada J; Kaneko H
    J Biosci Bioeng; 2007 Feb; 103(2):167-73. PubMed ID: 17368400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of hydrolysis and transglycosylation activity of Thermus maltogenic amylase by combinatorial saturation mutagenesis.
    Oh SW; Jang MU; Jeong CK; Kang HJ; Park JM; Kim TJ
    J Microbiol Biotechnol; 2008 Aug; 18(8):1401-7. PubMed ID: 18756100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceptor specificity of 4-alpha-glucanotransferases of mammalian glycogen debranching enzymes.
    Makino Y; Omichi K
    J Biochem; 2006 Mar; 139(3):535-41. PubMed ID: 16567418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: mannosyl binding promoted at subsite -2 and demoted at subsite -3.
    Hekmat O; Lo Leggio L; Rosengren A; Kamarauskaite J; Kolenova K; Stålbrand H
    Biochemistry; 2010 Jun; 49(23):4884-96. PubMed ID: 20426480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8.
    Papaneophytou CP; Pantazaki AA; Kyriakidis DA
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):659-68. PubMed ID: 19214501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis.
    Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N
    FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1.
    Leemhuis H; Rozeboom HJ; Wilbrink M; Euverink GJ; Dijkstra BW; Dijkhuizen L
    Biochemistry; 2003 Jun; 42(24):7518-26. PubMed ID: 12809508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
    Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D
    Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.