These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17407269)

  • 1. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile).
    Fukunaga R; Yokoyama S
    Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.
    Rayevsky AV; Sharifi M; Tukalo MA
    J Mol Graph Model; 2017 Sep; 76():289-295. PubMed ID: 28743072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of tRNA(Leu) isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing.
    Du X; Wang ED
    Biochemistry; 2002 Aug; 41(34):10623-8. PubMed ID: 12186547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases.
    Zhou XL; Wang M; Tan M; Huang Q; Eriani G; Wang ED
    Biochem J; 2010 Aug; 429(3):505-13. PubMed ID: 20482517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aminoacyl-tRNA synthetase with a defunct editing site.
    Lue SW; Kelley SO
    Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the nucleophilic factors and the productive complex for the editing reaction by leucyl-tRNA synthetase.
    Hagiwara Y; Nureki O; Tateno M
    FEBS Lett; 2009 Jun; 583(12):1901-8. PubMed ID: 19463822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation.
    Tukalo M; Yaremchuk A; Fukunaga R; Yokoyama S; Cusack S
    Nat Struct Mol Biol; 2005 Oct; 12(10):923-30. PubMed ID: 16155583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination.
    Liu Y; Liao J; Zhu B; Wang ED; Ding J
    Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase.
    Soma A; Uchiyama K; Sakamoto T; Maeda M; Himeno H
    J Mol Biol; 1999 Nov; 293(5):1029-38. PubMed ID: 10547283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
    Hsu JL; Martinis SA
    J Mol Biol; 2008 Feb; 376(2):482-91. PubMed ID: 18155724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices.
    Xu MG; Zhao MW; Wang ED
    J Biol Chem; 2004 Jul; 279(31):32151-8. PubMed ID: 15161932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.
    Yan W; Ye Q; Tan M; Chen X; Eriani G; Wang ED
    J Biol Chem; 2015 May; 290(19):12256-67. PubMed ID: 25817995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A present-day aminoacyl-tRNA synthetase with ancestral editing properties.
    Zhu B; Zhao MW; Eriani G; Wang ED
    RNA; 2007 Jan; 13(1):15-21. PubMed ID: 17095543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
    Dulic M; Cvetesic N; Zivkovic I; Palencia A; Cusack S; Bertosa B; Gruic-Sovulj I
    J Mol Biol; 2018 Jan; 430(1):1-16. PubMed ID: 29111343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
    Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED
    Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing.
    Zhou XL; Wang ED
    Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.