BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17407269)

  • 1. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile).
    Fukunaga R; Yokoyama S
    Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.
    Rayevsky AV; Sharifi M; Tukalo MA
    J Mol Graph Model; 2017 Sep; 76():289-295. PubMed ID: 28743072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of tRNA(Leu) isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing.
    Du X; Wang ED
    Biochemistry; 2002 Aug; 41(34):10623-8. PubMed ID: 12186547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases.
    Zhou XL; Wang M; Tan M; Huang Q; Eriani G; Wang ED
    Biochem J; 2010 Aug; 429(3):505-13. PubMed ID: 20482517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aminoacyl-tRNA synthetase with a defunct editing site.
    Lue SW; Kelley SO
    Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the nucleophilic factors and the productive complex for the editing reaction by leucyl-tRNA synthetase.
    Hagiwara Y; Nureki O; Tateno M
    FEBS Lett; 2009 Jun; 583(12):1901-8. PubMed ID: 19463822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation.
    Tukalo M; Yaremchuk A; Fukunaga R; Yokoyama S; Cusack S
    Nat Struct Mol Biol; 2005 Oct; 12(10):923-30. PubMed ID: 16155583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination.
    Liu Y; Liao J; Zhu B; Wang ED; Ding J
    Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase.
    Soma A; Uchiyama K; Sakamoto T; Maeda M; Himeno H
    J Mol Biol; 1999 Nov; 293(5):1029-38. PubMed ID: 10547283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
    Hsu JL; Martinis SA
    J Mol Biol; 2008 Feb; 376(2):482-91. PubMed ID: 18155724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices.
    Xu MG; Zhao MW; Wang ED
    J Biol Chem; 2004 Jul; 279(31):32151-8. PubMed ID: 15161932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.
    Yan W; Ye Q; Tan M; Chen X; Eriani G; Wang ED
    J Biol Chem; 2015 May; 290(19):12256-67. PubMed ID: 25817995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A present-day aminoacyl-tRNA synthetase with ancestral editing properties.
    Zhu B; Zhao MW; Eriani G; Wang ED
    RNA; 2007 Jan; 13(1):15-21. PubMed ID: 17095543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
    Dulic M; Cvetesic N; Zivkovic I; Palencia A; Cusack S; Bertosa B; Gruic-Sovulj I
    J Mol Biol; 2018 Jan; 430(1):1-16. PubMed ID: 29111343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
    Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED
    Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing.
    Zhou XL; Wang ED
    Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.