BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17407779)

  • 1. Microwave-Accelerated Surface Plasmon-Coupled Directional Luminescence: application to fast and sensitive assays in buffer, human serum and whole blood.
    Aslan K; Malyn SN; Geddes CD
    J Immunol Methods; 2007 May; 323(1):55-64. PubMed ID: 17407779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-accelerated surface plasmon-coupled directional luminescence 2: a platform technology for ultra fast and sensitive target DNA detection in whole blood.
    Aslan K; Previte MJ; Zhang Y; Geddes CD
    J Immunol Methods; 2008 Feb; 331(1-2):103-13. PubMed ID: 18230398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New tools for rapid clinical and bioagent diagnostics: microwaves and plasmonic nanostructures.
    Aslan K; Geddes CD
    Analyst; 2008 Nov; 133(11):1469-80. PubMed ID: 18936822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-accelerated ultrafast nanoparticle aggregation assays using gold colloids.
    Aslan K; Geddes CD
    Anal Chem; 2007 Mar; 79(5):2131-6. PubMed ID: 17256878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy for sensitive detection of tumor markers.
    Arima Y; Teramura Y; Takiguchi H; Kawano K; Kotera H; Iwata H
    Methods Mol Biol; 2009; 503():3-20. PubMed ID: 19151933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform.
    Aslan K; Malyn SN; Bector G; Geddes CD
    Analyst; 2007 Nov; 132(11):1122-9. PubMed ID: 17955146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery.
    Aslan K; Holley P; Geddes CD
    J Immunol Methods; 2006 May; 312(1-2):137-47. PubMed ID: 16678196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicolor directional surface plasmon-coupled chemiluminescence.
    Chowdhury MH; Malyn SN; Aslan K; Lakowicz JR; Geddes CD
    J Phys Chem B; 2006 Nov; 110(45):22644-51. PubMed ID: 17092012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays.
    Aslan K; Geddes CD
    Anal Chem; 2005 Dec; 77(24):8057-67. PubMed ID: 16351156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons.
    Zhang Y; Aslan K; Previte MJ; Malyn SN; Geddes CD
    J Phys Chem B; 2006 Dec; 110(49):25108-14. PubMed ID: 17149936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers.
    Zin MT; Leong K; Wong NY; Ma H; Sarikaya M; Jen AK
    Nanotechnology; 2009 Jan; 20(1):015305. PubMed ID: 19417250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescence resonance energy transfer sensors based on the assemblies of oppositely charged lanthanide/gold nanoparticles in aqueous solution.
    Gu JQ; Sun LD; Yan ZG; Yan CH
    Chem Asian J; 2008 Oct; 3(10):1857-64. PubMed ID: 18726878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements.
    Xiao Q; Zhou B; Huang S; Tian F; Guan H; Ge Y; Liu X; He Z; Liu Y
    Nanotechnology; 2009 Aug; 20(32):325101. PubMed ID: 19620762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescent chemosensors based on semiconductor quantum dots.
    Raymo FM; Yildiz I
    Phys Chem Chem Phys; 2007 May; 9(17):2036-43. PubMed ID: 17464385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emission-tunable microwave synthesis of highly luminescent water soluble CdSe/ZnS quantum dots.
    Roy MD; Herzing AA; De Paoli Lacerda SH; Becker ML
    Chem Commun (Camb); 2008 May; (18):2106-8. PubMed ID: 18438483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise reduction by multiple referencing in surface plasmon resonance imaging.
    Boecker D; Zybin A; Niemax K; Grunwald C; Mirsky VM
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023110. PubMed ID: 18315286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance-enhanced fluorescence implementation of a single-step competition assay: demonstration of fatty acid measurement using an anti-fatty acid monoclonal antibody and a Cy5-labeled fatty acid.
    Vareiro MM; Tranchant I; Maplin S; Zak K; Gani MM; Slevin CJ; Hailes HC; Tabor AB; Cameron PJ; Jenkins AT; Williams DE
    Anal Biochem; 2008 Jun; 377(2):243-50. PubMed ID: 18381194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles.
    Smitha SL; Nissamudeen KM; Philip D; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):186-90. PubMed ID: 18222106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum.
    Chang YF; Chen RC; Lee YJ; Chao SC; Su LC; Li YC; Chou C
    Biosens Bioelectron; 2009 Feb; 24(6):1610-4. PubMed ID: 18823773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy for sensitivity and specificity enhancements in prostate specific antigen-alpha1-antichymotrypsin detection based on surface plasmon resonance.
    Cao C; Kim JP; Kim BW; Chae H; Yoon HC; Yang SS; Sim SJ
    Biosens Bioelectron; 2006 May; 21(11):2106-13. PubMed ID: 16310353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.