These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17407891)

  • 1. A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles.
    van Dongen KW; Wright WM
    J Acoust Soc Am; 2007 Mar; 121(3):1538-49. PubMed ID: 17407891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility study of acoustic imaging for human thorax using an acoustic contrast source inversion algorithm.
    Song X; Li M; Yang F; Xu S; Abubakar A
    J Acoust Soc Am; 2018 Nov; 144(5):2782. PubMed ID: 30522278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on 3-D Acoustic Imaging for Human Thorax Based on Contrast Source Inversion.
    Song X; Li M; Yang F; Xu S; Abubakar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1533-1543. PubMed ID: 32142427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data completion method for the characterization of sound sources.
    Langrenne C; Garcia A
    J Acoust Soc Am; 2011 Oct; 130(4):2016-23. PubMed ID: 21973356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full wave-field reflection coefficient inversion.
    Dettmer J; Dosso SE; Holland CW
    J Acoust Soc Am; 2007 Dec; 122(6):3327-37. PubMed ID: 18247743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-parameter inversion with the aid of particle velocity field reconstruction.
    Taskin U; van Dongen KWA
    J Acoust Soc Am; 2020 Jun; 147(6):4032. PubMed ID: 32611169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regularization for improving the deconvolution in real-time near-field acoustic holography.
    Paillasseur S; Thomas JH; Pascal JC
    J Acoust Soc Am; 2011 Jun; 129(6):3777-87. PubMed ID: 21682401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics simulation of sound propagation through a blade row.
    Zhao L; Qiao W; Ji L
    J Acoust Soc Am; 2012 Oct; 132(4):2210-7. PubMed ID: 23039417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An acoustic inverse scattering problem for spheres with radially inhomogeneous compressibility.
    Bilgin E; Yapar A; Yelkenci T
    J Acoust Soc Am; 2013 Apr; 133(4):2097-104. PubMed ID: 23556579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TR-MUSIC inversion of the density and compressibility contrasts of point scatterers.
    Labyed Y; Huang L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):16-24. PubMed ID: 24402892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable density linear acoustic inverse problem.
    Moghaddam M; Chew WC
    Ultrason Imaging; 1993 Jul; 15(3):255-66. PubMed ID: 8879095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A frame-based approach for wideband correlation-inversion of lossless scatterers.
    Shlivinski A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2234-46. PubMed ID: 18986871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal nonlocal boundary control of the wide-angle parabolic equation for inversion of a waveguide acoustic field.
    Meyer M; Hermand JP
    J Acoust Soc Am; 2005 May; 117(5):2937-48. PubMed ID: 15957764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density imaging using inverse scattering.
    Lavarello RJ; Oelze ML
    J Acoust Soc Am; 2009 Feb; 125(2):793-802. PubMed ID: 19206857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics.
    Stritzel J; Melchert O; Wollweber M; Roth B
    Phys Rev E; 2017 Sep; 96(3-1):033308. PubMed ID: 29346868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of nonstationary sound fields based on the time domain plane wave superposition method.
    Zhang XZ; Thomas JH; Bi CX; Pascal JC
    J Acoust Soc Am; 2012 Oct; 132(4):2427-36. PubMed ID: 23039438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct analysis of dispersive wave fields from near-field pressure measurements.
    Hörchens L
    J Acoust Soc Am; 2011 Oct; 130(4):2035-42. PubMed ID: 21973358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative non-linear ultrasonic imaging of targets with significant acoustic impedance contrast--an experimental study.
    Guillermin R; Lasaygues P; Rabau G; Lefebvre JP
    J Acoust Soc Am; 2013 Aug; 134(2):1001-10. PubMed ID: 23927099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-step quantitative susceptibility mapping with variational penalties.
    Chatnuntawech I; McDaniel P; Cauley SF; Gagoski BA; Langkammer C; Martin A; Grant PE; Wald LL; Setsompop K; Adalsteinsson E; Bilgic B
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27332141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.