BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17407911)

  • 1. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.
    Hiryu S; Hagino T; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2007 Mar; 121(3):1749-57. PubMed ID: 17407911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight.
    Yamada Y; Hiryu S; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov; 202(11):791-801. PubMed ID: 27566319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.
    Takahashi E; Hyomoto K; Riquimaroux H; Watanabe Y; Ohta T; Hiryu S
    J Exp Biol; 2014 Aug; 217(Pt 16):2885-91. PubMed ID: 25122918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.
    Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation.
    Budenz T; Denzinger A; Schnitzler HU
    PLoS One; 2018; 13(3):e0194600. PubMed ID: 29543882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.
    Mantani S; Hiryu S; Fujioka E; Matsuta N; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field.
    Hiryu S; Hagino T; Fujioka E; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2008 Aug; 124(2):EL51-6. PubMed ID: 18681502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.
    Shiori Y; Hiryu S; Watanabe Y; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2009 Sep; 126(3):EL80-5. PubMed ID: 19739702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of perceived echo amplitudes in echolocating bats. II. The acoustic behavior of the big brown bat, Eptesicus fuscus, when tracking moving prey.
    Hartley DJ
    J Acoust Soc Am; 1992 Feb; 91(2):1133-49. PubMed ID: 1556313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of echoes reaching bats in flight from arbitrary targets by acoustic simulation.
    Teshima Y; Hasegawa Y; Tsuchiya T; Moriyama R; Genda S; Kawamura T; Hiryu S
    J Acoust Soc Am; 2022 Mar; 151(3):2127. PubMed ID: 35364898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.
    Hase K; Miyamoto T; Kobayasi KI; Hiryu S
    Behav Processes; 2016 Jul; 128():126-33. PubMed ID: 27157002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system.
    Fujioka E; Mantani S; Hiryu S; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2011 Feb; 129(2):1081-8. PubMed ID: 21361464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning behavior in echolocating common pipistrelle bats (Pipistrellus pipistrellus).
    Seibert AM; Koblitz JC; Denzinger A; Schnitzler HU
    PLoS One; 2013; 8(4):e60752. PubMed ID: 23580164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.
    Tian B; Schnitzler HU
    J Acoust Soc Am; 1997 Apr; 101(4):2347-64. PubMed ID: 9104033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New model for gain control of signal intensity to object distance in echolocating bats.
    Nørum U; Brinkløv S; Surlykke A
    J Exp Biol; 2012 Sep; 215(Pt 17):3045-54. PubMed ID: 22875770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosonar interpulse intervals and pulse-echo ambiguity in four species of echolocating bats.
    Simmons JA; Hiryu S; Shriram U
    J Exp Biol; 2019 Apr; 222(Pt 8):. PubMed ID: 30877230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.
    Sumiya M; Fujioka E; Motoi K; Kondo M; Hiryu S
    PLoS One; 2017; 12(1):e0169995. PubMed ID: 28085936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of echolocation behavior of bats in "echo space" using acoustic simulation.
    Teshima Y; Yamada Y; Tsuchiya T; Heim O; Hiryu S
    BMC Biol; 2022 Mar; 20(1):59. PubMed ID: 35282831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y
    J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.