These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 17408222)
1. Application of thermal effusivity as a process analytical technology tool for monitoring and control of the roller compaction process. Ghorab MK; Chatlapalli R; Hasan S; Nagi A AAPS PharmSciTech; 2007 Mar; 8(1):23. PubMed ID: 17408222 [TBL] [Abstract][Full Text] [Related]
2. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
3. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules. Gupta A; Peck GE; Miller RW; Morris KR J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545 [TBL] [Abstract][Full Text] [Related]
4. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction. Wu SJ; Sun C J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength. He X; Secreast PJ; Amidon GE J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360 [TBL] [Abstract][Full Text] [Related]
6. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression. Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211 [TBL] [Abstract][Full Text] [Related]
8. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose. Hein S; Picker-Freyer KM; Langridge J Pharm Dev Technol; 2008; 13(6):523-32. PubMed ID: 18728996 [TBL] [Abstract][Full Text] [Related]
9. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction. Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of some compression aids in tableting of roller compacted swellable core drug layer. Golchert D; Bines E; Carmody A Int J Pharm; 2013 Sep; 453(2):322-8. PubMed ID: 23796839 [TBL] [Abstract][Full Text] [Related]
11. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy. Gupta A; Peck GE; Miller RW; Morris KR J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560 [TBL] [Abstract][Full Text] [Related]
12. Roller compaction, granulation and capsule product dissolution of drug formulations containing a lactose or mannitol filler, starch, and talc. Chang CK; Alvarez-Nunez FA; Rinella JV; Magnusson LE; Sueda K AAPS PharmSciTech; 2008; 9(2):597-604. PubMed ID: 18459052 [TBL] [Abstract][Full Text] [Related]
13. Instrumented roll technology for the design space development of roller compaction process. Nesarikar VV; Vatsaraj N; Patel C; Early W; Pandey P; Sprockel O; Gao Z; Jerzewski R; Miller R; Levin M Int J Pharm; 2012 Apr; 426(1-2):116-131. PubMed ID: 22286023 [TBL] [Abstract][Full Text] [Related]
14. A formulation strategy for solving the overgranulation problem in high shear wet granulation. Osei-Yeboah F; Zhang M; Feng Y; Sun CC J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120 [TBL] [Abstract][Full Text] [Related]
15. A modified mechanistic approach for predicting ribbon solid fraction at different roller compaction speeds. Li J; Tseng YC; Paul S Int J Pharm; 2024 Jul; 660():124366. PubMed ID: 38901541 [TBL] [Abstract][Full Text] [Related]
16. Simulation of roller compaction using a laboratory scale compaction simulator. Zinchuk AV; Mullarney MP; Hancock BC Int J Pharm; 2004 Jan; 269(2):403-15. PubMed ID: 14706252 [TBL] [Abstract][Full Text] [Related]
17. Energy-based analysis of cone milling process for the comminution of roller compacted flakes. Samanta AK; Wang L; Ng KY; Heng PW Int J Pharm; 2014 Feb; 462(1-2):108-14. PubMed ID: 24374608 [TBL] [Abstract][Full Text] [Related]
18. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality. Omar CS; Dhenge RM; Osborne JD; Althaus TO; Palzer S; Hounslow MJ; Salman AD Int J Pharm; 2015 Dec; 496(1):63-74. PubMed ID: 26117279 [TBL] [Abstract][Full Text] [Related]
19. A novel method for estimating solid fraction of roller-compacted ribbons. Nkansah P; Wu SJ; Sobotka S; Yamamoto K; Shao ZJ Drug Dev Ind Pharm; 2008 Feb; 34(2):142-8. PubMed ID: 18302032 [TBL] [Abstract][Full Text] [Related]
20. Roller compactor: The effect of mechanical properties of primary particles. Al-Asady RB; Osborne JD; Hounslow MJ; Salman AD Int J Pharm; 2015 Dec; 496(1):124-36. PubMed ID: 26024822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]