These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17408326)

  • 1. Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model.
    Kurz MJ; Stergiou N
    J Biomech Eng; 2007 Apr; 129(2):216-22. PubMed ID: 17408326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model.
    Kurz MJ; Stergiou N
    Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A passive dynamic walking robot that has a deterministic nonlinear gait.
    Kurz MJ; Judkins TN; Arellano C; Scott-Pandorf M
    J Biomech; 2008; 41(6):1310-6. PubMed ID: 18359030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control.
    Verdaasdonk BW; Koopman HF; van der Helm FC
    Biol Cybern; 2009 Jul; 101(1):49-61. PubMed ID: 19504121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcation and chaos in the simple passive dynamic walking model with upper body.
    Li Q; Guo J; Yang XS
    Chaos; 2014 Sep; 24(3):033114. PubMed ID: 25273194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
    Misiaszek JE
    J Neurophysiol; 2006 Oct; 96(4):1816-28. PubMed ID: 16823027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender differences exist in the hip joint moments of healthy older walkers.
    Boyer KA; Beaupre GS; Andriacchi TP
    J Biomech; 2008 Dec; 41(16):3360-5. PubMed ID: 19022448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An upper-body can improve the stability and efficiency of passive dynamic walking.
    Chyou T; Liddell GF; Paulin MG
    J Theor Biol; 2011 Sep; 285(1):126-35. PubMed ID: 21740916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic stability of passive dynamic walking on an irregular surface.
    Su JL; Dingwell JB
    J Biomech Eng; 2007 Dec; 129(6):802-10. PubMed ID: 18067383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of an underactuated bipedal gait.
    Mukherjee S; Sangwan V; Taneja A; Seth B
    Biosystems; 2007; 90(2):582-9. PubMed ID: 17307288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking in simulated Martian gravity: influence of the portable life support system's design on dynamic stability.
    Scott-Pandorf MM; O'Connor DP; Layne CS; Josić K; Kurz MJ
    J Biomech Eng; 2009 Sep; 131(9):091005. PubMed ID: 19725694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of a bipedal robot using mutually coupled Rayleigh oscillators.
    Filho AC; Dutra MS; Raptopoulos LS
    Biol Cybern; 2005 Jan; 92(1):1-7. PubMed ID: 15580522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cadence on energy generation and absorption at lower extremity joints during gait.
    Teixeira-Salmela LF; Nadeau S; Milot MH; Gravel D; Requião LF
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):769-78. PubMed ID: 18384921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between local and orbital dynamic stability during human walking.
    Dingwell JB; Kang HG
    J Biomech Eng; 2007 Aug; 129(4):586-93. PubMed ID: 17655480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the complexity of human gait dynamics.
    Scafetta N; Marchi D; West BJ
    Chaos; 2009 Jun; 19(2):026108. PubMed ID: 19566268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The simplest walking model: stability, complexity, and scaling.
    Garcia M; Chatterjee A; Ruina A; Coleman M
    J Biomech Eng; 1998 Apr; 120(2):281-8. PubMed ID: 10412391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral claudication results in alterations in the gait biomechanics at the hip and ankle joints.
    Chen SJ; Pipinos I; Johanning J; Radovic M; Huisinga JM; Myers SA; Stergiou N
    J Biomech; 2008 Aug; 41(11):2506-14. PubMed ID: 18586253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new route to chaos: sequences of topological torus bifurcations.
    Spears BK; Szeri AJ
    Chaos; 2005 Sep; 15(3):33108. PubMed ID: 16252982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.