These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17408329)

  • 1. Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers.
    Ateshian GA
    J Biomech Eng; 2007 Apr; 129(2):240-9. PubMed ID: 17408329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.
    Hou C; Ateshian GA
    Comput Methods Biomech Biomed Engin; 2016; 19(8):883-93. PubMed ID: 26291492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of stress and strain in the interosseous ligament of the forearm based on fiber network theory.
    Pfaeffle HJ; Fischer KJ; Srinivasa A; Manson T; Woo SL; Tomaino M
    J Biomech Eng; 2006 Oct; 128(5):725-32. PubMed ID: 16995759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanobiology of soft skeletal tissue differentiation--a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications.
    Loboa EG; Wren TA; Beaupré GS; Carter DR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):83-96. PubMed ID: 14586808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches.
    Cortes DH; Lake SP; Kadlowec JA; Soslowsky LJ; Elliott DM
    Biomech Model Mechanobiol; 2010 Oct; 9(5):651-8. PubMed ID: 20148345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of cranial sutures using the finite element method.
    Jasinoski SC; Reddy BD; Louw KK; Chinsamy A
    J Biomech; 2010 Dec; 43(16):3104-11. PubMed ID: 20825945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A continuous fiber distribution material model for human cervical tissue.
    Myers KM; Hendon CP; Gan Y; Yao W; Yoshida K; Fernandez M; Vink J; Wapner RJ
    J Biomech; 2015 Jun; 48(9):1533-40. PubMed ID: 25817474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
    Römgens AM; van Donkelaar CC; Ito K
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1221-31. PubMed ID: 23443749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena.
    Ateshian GA; Rajan V; Chahine NO; Canal CE; Hung CT
    J Biomech Eng; 2009 Jun; 131(6):061003. PubMed ID: 19449957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties.
    Johnson KL; Trim MW; Francis DK; Whittington WR; Miller JA; Bennett CE; Horstemeyer MF
    Acta Biomater; 2017 Jan; 48():300-308. PubMed ID: 27793720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling.
    Moerman KM; Simms CK; Nagel T
    J Mech Behav Biomed Mater; 2016 Mar; 56():218-228. PubMed ID: 26719933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a probabilistic microstructural model to determine reference length and toe-to-linear region transition in fibrous connective tissue.
    Hurschler C; Provenzano PP; Vanderby R
    J Biomech Eng; 2003 Jun; 125(3):415-22. PubMed ID: 12929247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the tension-compression switch of the Gasser-Ogden-Holzapfel model: Analysis and a new pre-integrated proposal.
    Latorre M; Montáns FJ
    J Mech Behav Biomed Mater; 2016 Apr; 57():175-89. PubMed ID: 26720909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression.
    Huang CY; Gu WY
    J Biomech Eng; 2007 Jun; 129(3):423-9. PubMed ID: 17536910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.