BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17408330)

  • 1. A bimodular polyconvex anisotropic strain energy function for articular cartilage.
    Klisch SM
    J Biomech Eng; 2007 Apr; 129(2):250-8. PubMed ID: 17408330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bimodular theory for finite deformations: Comparison of orthotropic second-order and exponential stress constitutive equations for articular cartilage.
    Klisch SM
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):90-101. PubMed ID: 16598492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.
    Chegini S; Ferguson SJ
    J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of high tensile Poisson's ratios of articular cartilage with a finite element fibril-reinforced hyperelastic model.
    García JJ
    Med Eng Phys; 2008 Jun; 30(5):590-8. PubMed ID: 17690001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP; Herzog W; Korhonen RK; Jurvelin JS
    Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic hydraulic permeability in compressed articular cartilage.
    Reynaud B; Quinn TM
    J Biomech; 2006; 39(1):131-7. PubMed ID: 16271597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polyconvex anisotropic strain-energy function for soft collagenous tissues.
    Itskov M; Ehret AE; Mavrilas D
    Biomech Model Mechanobiol; 2006 Mar; 5(1):17-26. PubMed ID: 16362195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.
    Guerin HL; Elliott DM
    J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear mechanical property of tracheal cartilage: a theoretical and experimental study.
    Teng Z; Ochoa I; Li Z; Lin Y; Rodriguez JF; Bea JA; Doblare M
    J Biomech; 2008; 41(9):1995-2002. PubMed ID: 18495133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonlinear biphasic viscohyperelastic model for articular cartilage.
    García JJ; Cortés DH
    J Biomech; 2006; 39(16):2991-8. PubMed ID: 16316659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure.
    Julkunen P; Wilson W; Jurvelin JS; Rieppo J; Qu CJ; Lammi MJ; Korhonen RK
    J Biomech; 2008; 41(9):1978-86. PubMed ID: 18490021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation.
    Lu XL; Miller C; Chen FH; Guo XE; Mow VC
    J Biomech; 2007; 40(11):2434-41. PubMed ID: 17222852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.
    Li L; Shirazi-Adl A; Buschmann MD
    Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of the Poisson's ratio of human patella cartilage in tension.
    Elliott DM; Narmoneva DA; Setton LA
    J Biomech Eng; 2002 Apr; 124(2):223-8. PubMed ID: 12002132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of fibril reinforcement in the mechanical behavior of cartilage.
    Li L; Buschmann MD; Shirazi-Adl A
    Biorheology; 2002; 39(1-2):89-96. PubMed ID: 12082271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry.
    Shahar R; Zaslansky P; Barak M; Friesem AA; Currey JD; Weiner S
    J Biomech; 2007; 40(2):252-64. PubMed ID: 16563402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.