BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17408333)

  • 1. A computationally efficient optimization kernel for material parameter estimation procedures.
    Schmid H; Nash MP; Young AA; Röhrle O; Hunter PJ
    J Biomech Eng; 2007 Apr; 129(2):279-83. PubMed ID: 17408333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests.
    Schmid H; O'Callaghan P; Nash MP; Lin W; LeGrice IJ; Smaill BH; Young AA; Hunter PJ
    Biomech Model Mechanobiol; 2008 Jun; 7(3):161-73. PubMed ID: 17487519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial material parameter estimation-a comparative study for simple shear.
    Schmid H; Nash MP; Young AA; Hunter PJ
    J Biomech Eng; 2006 Oct; 128(5):742-50. PubMed ID: 16995761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations.
    Schmid H; Wang YK; Ashton J; Ehret AE; Krittian SB; Nash MP; Hunter PJ
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):283-95. PubMed ID: 19089682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element study of invariant-based orthotropic constitutive equations in the context of myocardial material parameter estimation.
    Schmid H; Wang W; Hunter PJ; Nash MP
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):691-9. PubMed ID: 19639485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization.
    Speirs DC; de Souza Neto EA; Perić D
    J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Least squares estimation of variance components for linkage.
    Amos CI; Gu X; Chen J; Davis BR
    Genet Epidemiol; 2000; 19 Suppl 1():S1-7. PubMed ID: 11055363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regularized estimation in the accelerated failure time model with high-dimensional covariates.
    Huang J; Ma S; Xie H
    Biometrics; 2006 Sep; 62(3):813-20. PubMed ID: 16984324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KINFIT: a non linear least-squares computer program for the estimation of pharmacokinetic parameters after intravenous administration.
    Kaltenbach ML; Vistelle R
    Anticancer Res; 1994; 14(6A):2375-7. PubMed ID: 7825975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data.
    Balaban G; Alnæs MS; Sundnes J; Rognes ME
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1509-1521. PubMed ID: 27008196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curve-skeleton extraction using iterative least squares optimization.
    Wang YS; Lee TY
    IEEE Trans Vis Comput Graph; 2008; 14(4):926-36. PubMed ID: 18467765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple computational approach to model parameter estimation.
    Blardi P; Barbini P; Di Perri T
    Int J Clin Pharmacol Res; 1993; 13(6):325-30. PubMed ID: 8088933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of tissue blood perfusion rate from diffusible indicator measurements: a sensitivity analysis.
    Shitzer A; Eberhart RC; Eisenfeld J
    J Biomech Eng; 1980 Aug; 102(3):258. PubMed ID: 19530810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm.
    Fang F; Ni BJ; Yu HQ
    Water Res; 2009 Jun; 43(10):2595-604. PubMed ID: 19386340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium.
    Sommer G; Haspinger DCh; Andrä M; Sacherer M; Viertler C; Regitnig P; Holzapfel GA
    Ann Biomed Eng; 2015 Oct; 43(10):2334-48. PubMed ID: 25707595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On parameter estimation for biaxial mechanical behavior of arteries.
    Zeinali-Davarani S; Choi J; Baek S
    J Biomech; 2009 Mar; 42(4):524-30. PubMed ID: 19159887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart.
    Liu H; Shi Ast P
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):378-89. PubMed ID: 19272914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hazard function for cancer patients and cancer cell dynamics.
    Horová I; Pospísil Z; Zelinka J
    J Theor Biol; 2009 Jun; 258(3):437-43. PubMed ID: 18634801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.