These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 17408365)

  • 1. Salmonella-based vaccines for infectious diseases.
    Kwon YM; Cox MM; Calhoun LN
    Expert Rev Vaccines; 2007 Apr; 6(2):147-52. PubMed ID: 17408365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salmonella: immune responses and vaccines.
    Mastroeni P; Chabalgoity JA; Dunstan SJ; Maskell DJ; Dougan G
    Vet J; 2001 Mar; 161(2):132-64. PubMed ID: 11243685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant Salmonella vectors in vaccine development.
    Curtiss R; Kelly SM; Tinge SA; Tacket CO; Levine MM; Srinivasan J; Koopman M
    Dev Biol Stand; 1994; 82():23-33. PubMed ID: 7958478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live attenuated bacteria as vectors to deliver plasmid DNA vaccines.
    Dietrich G; Spreng S; Favre D; Viret JF; Guzman CA
    Curr Opin Mol Ther; 2003 Feb; 5(1):10-9. PubMed ID: 12669465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of attenuated bacteria as delivery vectors for DNA vaccines.
    Daudel D; Weidinger G; Spreng S
    Expert Rev Vaccines; 2007 Feb; 6(1):97-110. PubMed ID: 17280482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SopB of Salmonella enterica serovar Typhimurium is a potential DNA vaccine candidate in conjugation with live attenuated bacteria.
    Nagarajan AG; Balasundaram SV; Janice J; Karnam G; Eswarappa SM; Chakravortty D
    Vaccine; 2009 May; 27(21):2804-11. PubMed ID: 19428891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the development of live, attenuated bacterial vectors.
    Roland KL; Tinge SA; Killeen KP; Kochi SK
    Curr Opin Mol Ther; 2005 Feb; 7(1):62-72. PubMed ID: 15732531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New ways to identify novel bacterial antigens for vaccine development.
    Movahedi AR; Hampson DJ
    Vet Microbiol; 2008 Sep; 131(1-2):1-13. PubMed ID: 18372122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-derived vaccines.
    De Groot AS; Rappuoli R
    Expert Rev Vaccines; 2004 Feb; 3(1):59-76. PubMed ID: 14761244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Salmonella live vaccines with chromosomal expression cassettes for translocated fusion proteins.
    Husseiny MI; Hensel M
    Vaccine; 2009 Jun; 27(28):3780-7. PubMed ID: 19464562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA vaccines for biodefence.
    Garmory HS; Perkins SD; Phillpotts RJ; Titball RW
    Adv Drug Deliv Rev; 2005 Jun; 57(9):1343-61. PubMed ID: 15935877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of novel vaccines using DNA shuffling and screening strategies.
    Locher CP; Soong NW; Whalen RG; Punnonen J
    Curr Opin Mol Ther; 2004 Feb; 6(1):34-9. PubMed ID: 15011779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular bacteria as targets and carriers for vaccination.
    Mollenkopf H; Dietrich G; Kaufmann SH
    Biol Chem; 2001 Apr; 382(4):521-32. PubMed ID: 11405217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed population approach for vaccination with live recombinant Salmonella strains.
    Yan ZX; Meyer TF
    J Biotechnol; 1996 Jan; 44(1-3):197-201. PubMed ID: 8717404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of gene-based vaccines.
    Barouch DH
    J Pathol; 2006 Jan; 208(2):283-9. PubMed ID: 16362986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccination against salmonella, enterohaemorrhagic E. coli and Campylobacter in food-producing animals.
    Wallis TS
    Dev Biol (Basel); 2004; 119():343-50. PubMed ID: 15742645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Use of Salmonellas as a vector in the designing of recombinant vaccines].
    Boĭchenko MN; Vorobév AA
    Vestn Ross Akad Med Nauk; 1997; (3):43-6. PubMed ID: 9181857
    [No Abstract]   [Full Text] [Related]  

  • 18. Live bacterial delivery systems for development of mucosal vaccines.
    Thole JE; van Dalen PJ; Havenith CE; Pouwels PH; Seegers JF; Tielen FD; van der Zee MD; Zegers ND; Shaw M
    Curr Opin Mol Ther; 2000 Feb; 2(1):94-9. PubMed ID: 11249657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing antibacterial vaccines in genomics and proteomics era.
    Kaushik DK; Sehgal D
    Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems.
    Pontes DS; de Azevedo MS; Chatel JM; Langella P; Azevedo V; Miyoshi A
    Protein Expr Purif; 2011 Oct; 79(2):165-75. PubMed ID: 21704169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.