BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 17408566)

  • 1. On the role of receptor-receptor interactions and volume transmission in learning and memory.
    Guidolin D; Fuxe K; Neri G; Nussdorfer GG; Agnati LF
    Brain Res Rev; 2007 Aug; 55(1):119-33. PubMed ID: 17408566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission.
    Fuxe K; Dahlström A; Höistad M; Marcellino D; Jansson A; Rivera A; Diaz-Cabiale Z; Jacobsen K; Tinner-Staines B; Hagman B; Leo G; Staines W; Guidolin D; Kehr J; Genedani S; Belluardo N; Agnati LF
    Brain Res Rev; 2007 Aug; 55(1):17-54. PubMed ID: 17433836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives.
    Agnati LF; Leo G; Zanardi A; Genedani S; Rivera A; Fuxe K; Guidolin D
    Acta Physiol (Oxf); 2006; 187(1-2):329-44. PubMed ID: 16734770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The discovery of central monoamine neurons gave volume transmission to the wired brain.
    Fuxe K; Dahlström AB; Jonsson G; Marcellino D; Guescini M; Dam M; Manger P; Agnati L
    Prog Neurobiol; 2010 Feb; 90(2):82-100. PubMed ID: 19853007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network reorganization driven by temporal interdependence of its elements.
    Waddell J; Zochowski M
    Chaos; 2006 Jun; 16(2):023106. PubMed ID: 16822009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Neurobiology of learning--the basis of an alteration process].
    Braus DF
    Psychiatr Prax; 2004 Nov; 31 Suppl 2():S215-23. PubMed ID: 15586313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and memory.
    Susswein AJ; Katzoff A; Miller N; Hurwitz I
    Neuroscientist; 2004 Apr; 10(2):153-62. PubMed ID: 15070489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of neuronal excitability: Hebbian rules beyond the synapse.
    Campanac E; Debanne D
    Arch Ital Biol; 2007 Nov; 145(3-4):277-87. PubMed ID: 18075121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning.
    Hobson JA; Pace-Schott EF
    Nat Rev Neurosci; 2002 Sep; 3(9):679-93. PubMed ID: 12209117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of neuromodulator receptor efficacy--implications for whole-neuron and synaptic plasticity.
    Scheler G
    Prog Neurobiol; 2004 Apr; 72(6):399-415. PubMed ID: 15177784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal networks and synaptic plasticity: understanding complex system dynamics by interfacing neurons with silicon technologies.
    Colicos MA; Syed NI
    J Exp Biol; 2006 Jun; 209(Pt 12):2312-9. PubMed ID: 16731807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication and computation in the central nervous system.
    Benfenati F; Agnati LF
    Funct Neurol; 1991; 6(3):202-9. PubMed ID: 1683850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to discriminate through long-term changes of dynamical synaptic transmission.
    Leibold C; Bendels MH
    Neural Comput; 2009 Dec; 21(12):3408-28. PubMed ID: 19764877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial cells in synaptic plasticity.
    Todd KJ; Serrano A; Lacaille JC; Robitaille R
    J Physiol Paris; 2006; 99(2-3):75-83. PubMed ID: 16446078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Information processing with frequency-dependent synaptic connections.
    Markram H; Gupta A; Uziel A; Wang Y; Tsodyks M
    Neurobiol Learn Mem; 1998; 70(1-2):101-12. PubMed ID: 9753590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding neuronal molecular networks builds on neuronal cellular network architecture.
    Agnati LF; Guidolin D; Carone C; Dam M; Genedani S; Fuxe K
    Brain Res Rev; 2008 Aug; 58(2):379-99. PubMed ID: 18164422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cellular and molecular mechanisms of memory].
    Laroche S
    J Soc Biol; 2001; 195(4):363-73. PubMed ID: 11938552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.