These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
517 related articles for article (PubMed ID: 17408764)
1. Diabetic type II Goto-Kakizaki rats show progressively decreasing exploratory activity and learning impairments in fixed and progressive ratios of a lever-press task. Moreira T; Malec E; Ostenson CG; Efendic S; Liljequist S Behav Brain Res; 2007 Jun; 180(1):28-41. PubMed ID: 17408764 [TBL] [Abstract][Full Text] [Related]
2. Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression. Moreira T; Cebers G; Pickering C; Ostenson CG; Efendic S; Liljequist S Neuroscience; 2007 Feb; 144(4):1169-85. PubMed ID: 17175109 [TBL] [Abstract][Full Text] [Related]
3. Female mini-pig performance of temporal response differentiation, incremental repeated acquisition, and progressive ratio operant tasks. Ferguson SA; Gopee NV; Paule MG; Howard PC Behav Processes; 2009 Jan; 80(1):28-34. PubMed ID: 18804519 [TBL] [Abstract][Full Text] [Related]
4. Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Ennaceur A; Michalikova S; Bradford A; Ahmed S Behav Brain Res; 2005 Apr; 159(2):247-66. PubMed ID: 15817188 [TBL] [Abstract][Full Text] [Related]
5. Long-term effects of type 2 diabetes mellitus on heart rhythm in the Goto-Kakizaki rat. Howarth FC; Jacobson M; Shafiullah M; Adeghate E Exp Physiol; 2008 Mar; 93(3):362-9. PubMed ID: 18156165 [TBL] [Abstract][Full Text] [Related]
6. Extradural compression of the sensorimotor cortex delays the acquisition but not the recalling of a lever-pressing task in Wistar rats. Moreira T; Cebers G; Cebere A; Wägner A; Liljequist S Behav Brain Res; 2005 Nov; 164(2):250-65. PubMed ID: 16157396 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes. Miyamoto K; Ogura Y; Nishiwaki H; Matsuda N; Honda Y; Kato S; Ishida H; Seino Y Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):898-905. PubMed ID: 8603874 [TBL] [Abstract][Full Text] [Related]
8. Impaired beta-cell regeneration after partial pancreatectomy in the adult Goto-Kakizaki rat, a spontaneous model of type II diabetes. Plachot C; Movassat J; Portha B Histochem Cell Biol; 2001 Aug; 116(2):131-9. PubMed ID: 11685541 [TBL] [Abstract][Full Text] [Related]
9. Re-evaluation of an animal model for ADHD using a free-operant choice task. Pardey MC; Homewood J; Taylor A; Cornish JL J Neurosci Methods; 2009 Jan; 176(2):166-71. PubMed ID: 18835408 [TBL] [Abstract][Full Text] [Related]
10. Dissociation of hypertension and fixed interval responding in two separate strains of genetically hypertensive rat. Wickens JR; Macfarlane J; Booker C; McNaughton N Behav Brain Res; 2004 Jul; 152(2):393-401. PubMed ID: 15196808 [TBL] [Abstract][Full Text] [Related]
11. Chronic effects of type 2 diabetes mellitus on cardiac muscle contraction in the Goto-Kakizaki rat. Howarth FC; Shafiullah M; Qureshi MA Exp Physiol; 2007 Nov; 92(6):1029-36. PubMed ID: 17675413 [TBL] [Abstract][Full Text] [Related]
12. The quest for a model of type II diabetes with nephropathy: the Goto Kakizaki rat. Janssen U; Vassiliadou A; Riley SG; Phillips AO; Floege J J Nephrol; 2004; 17(6):769-73. PubMed ID: 15593049 [TBL] [Abstract][Full Text] [Related]
13. Positive relationship between activity in a novel environment and operant ethanol self-administration in rats. Nadal R; Armario A; Janak PH Psychopharmacology (Berl); 2002 Jul; 162(3):333-8. PubMed ID: 12122492 [TBL] [Abstract][Full Text] [Related]
14. Individual differences in novelty- and cocaine-induced locomotor activity as predictors of food-reinforced operant behavior in two outbred rat strains. Gulley JM Pharmacol Biochem Behav; 2007 Apr; 86(4):749-57. PubMed ID: 17408729 [TBL] [Abstract][Full Text] [Related]
15. Long-term renal changes in the Goto-Kakizaki rat, a model of lean type 2 diabetes. Schrijvers BF; De Vriese AS; Van de Voorde J; Rasch R; Lameire NH; Flyvbjerg A Nephrol Dial Transplant; 2004 May; 19(5):1092-7. PubMed ID: 14993490 [TBL] [Abstract][Full Text] [Related]
16. A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Brenes JC; Padilla M; Fornaguera J Behav Brain Res; 2009 Jan; 197(1):125-37. PubMed ID: 18786573 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Yin HH; Knowlton BJ; Balleine BW Behav Brain Res; 2006 Jan; 166(2):189-96. PubMed ID: 16153716 [TBL] [Abstract][Full Text] [Related]
18. Dopamine in the orbitofrontal cortex regulates operant responding under a progressive ratio of reinforcement in rats. Cetin T; Freudenberg F; Füchtemeier M; Koch M Neurosci Lett; 2004 Nov; 370(2-3):114-7. PubMed ID: 15488305 [TBL] [Abstract][Full Text] [Related]
19. Pineal melatonin synthesis is decreased in type 2 diabetic Goto-Kakizaki rats. Frese T; Bach AG; Mühlbauer E; Pönicke K; Brömme HJ; Welp A; Peschke E Life Sci; 2009 Sep; 85(13-14):526-33. PubMed ID: 19695268 [TBL] [Abstract][Full Text] [Related]
20. Effects of medial septal lesions on action-outcome associations in rats under conditions of delayed reinforcement. Numan R; Ouimette AS; Holloway KA; Curry CE Behav Neurosci; 2004 Dec; 118(6):1240-52. PubMed ID: 15598133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]