These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17408860)

  • 1. Improving the emission characteristics of a carbon nanotube cathode in an aging process.
    Liu W; Li X; Zhu C
    Ultramicroscopy; 2007 Sep; 107(9):833-7. PubMed ID: 17408860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving uniform field emission from carbon nanotube composite cold cathode with different carbon nanotube contents: effects of conductance and plasma treatment.
    Liu JB; Chen J; Xu NS; Deng SZ; She JC
    Ultramicroscopy; 2009 Apr; 109(5):390-4. PubMed ID: 19101085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damages of screen-printed carbon nanotube cold cathode during the field emission process.
    Zhang G; Chen J; Deng SZ; She JC; Xu NS
    Ultramicroscopy; 2009 Apr; 109(5):385-9. PubMed ID: 19110375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carbon nanotube field emission cathode with high current density and long-term stability.
    Calderón-Colón X; Geng H; Gao B; An L; Cao G; Zhou O
    Nanotechnology; 2009 Aug; 20(32):325707. PubMed ID: 19620758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.
    Agarwal S; Yamini Sarada B; Kar KK
    Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel planar field emission of ultra-thin individual carbon nanotubes.
    Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D
    Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient field emission from triode-type 1D arrays of carbon nanotubes.
    Shiratori Y; Furuichi K; Tsuji Y; Sugime H; Noda S
    Nanotechnology; 2009 Nov; 20(47):475707. PubMed ID: 19875868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of electron field-emission characteristics of individual carbon nanotubes: the importance of the tip structure.
    Wang MS; Peng LM; Wang JY; Jin CH; Chen Q
    J Phys Chem B; 2006 May; 110(19):9397-402. PubMed ID: 16686482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and calculation of field emission enhancement factor for carbon nanotubes array.
    Wang XQ; Wang M; Li ZH; Xu YB; He PM
    Ultramicroscopy; 2005 Feb; 102(3):181-7. PubMed ID: 15639348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of amorphous carbon layer on the field emission characteristics of carbon nanotube film.
    Zhang Y; Du JL; Xu JH; Deng SZ; Xu NS; Chen J
    Ultramicroscopy; 2011 May; 111(6):426-30. PubMed ID: 21159440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes.
    Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV
    Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers.
    Chen Y; Miao HY; Lin RJ; Zhang M; Liang R; Zhang C; Wang B
    Nanotechnology; 2010 Dec; 21(49):495702. PubMed ID: 21071825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved field emission stability of thin multiwalled carbon nanotube emitters.
    Chen G; Shin DH; Kim S; Roth S; Lee CJ
    Nanotechnology; 2010 Jan; 21(1):015704. PubMed ID: 19946155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties.
    Uh HS; Park SS; Kim BW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3731-5. PubMed ID: 18047047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical expression for the emission site density of nanotube film emitters.
    Liu H; Kato S; Saito Y
    Nanotechnology; 2009 Jul; 20(27):275206. PubMed ID: 19528676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Stable Carbon Nanotube Cold Cathode Electron Emitters with Post-Growth Electrical Aging.
    Kim JH; Kang JS; Park KC
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30544608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
    Qiao L; Zheng WT; Xu H; Zhang L; Jiang Q
    J Chem Phys; 2007 Apr; 126(16):164702. PubMed ID: 17477619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of carbon nanotubes by frit inlet asymmetrical flow field-flow fractionation.
    Moon MH; Kang D; Jung J; Kim J
    J Sep Sci; 2004 Jun; 27(9):710-7. PubMed ID: 15387467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler.
    Sun Y; Yun KN; Leti G; Lee SH; Song YH; Lee CJ
    Nanotechnology; 2017 Feb; 28(6):065201. PubMed ID: 28050970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate.
    Yoon BJ; Hong EH; Jee SE; Yoon DM; Shim DS; Son GY; Lee YJ; Lee KH; Kim HS; Park CG
    J Am Chem Soc; 2005 Jun; 127(23):8234-5. PubMed ID: 15941227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.