BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17409141)

  • 21. Changing the site of initiation of plus-strand DNA synthesis inhibits the subsequent template switch during replication of a hepadnavirus.
    Loeb DD; Tian R; Gulya KJ; Qualey AE
    J Virol; 1998 Aug; 72(8):6565-73. PubMed ID: 9658101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis.
    Chen Y; Robinson WS; Marion PL
    J Virol; 1994 Aug; 68(8):5232-8. PubMed ID: 8035519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis.
    Nassal M; Rieger A
    J Virol; 1996 May; 70(5):2764-73. PubMed ID: 8627750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein.
    Gao W; Hu J
    J Virol; 2007 Jun; 81(12):6164-74. PubMed ID: 17409153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA.
    Staprans S; Loeb DD; Ganem D
    J Virol; 1991 Mar; 65(3):1255-62. PubMed ID: 1704925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA.
    Chen Y; Marion PL
    J Virol; 1996 Sep; 70(9):6151-6. PubMed ID: 8709240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Establishment of a method to detect duck hepatitis B virus covalently closed circular DNA based on rolling circle amplification].
    Su HL; Wang HM; Ran JY; Wang Z; Li HY; Yang Y; Xu DP; Liu YM
    Bing Du Xue Bao; 2014 Jul; 30(4):382-6. PubMed ID: 25272590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?
    Cui X; McAllister R; Boregowda R; Sohn JA; Cortes Ledesma F; Caldecott KW; Seeger C; Hu J
    PLoS One; 2015; 10(6):e0128401. PubMed ID: 26079492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative sequence analysis of duck and human hepatitis B virus genomes.
    Sprengel R; Kuhn C; Will H; Schaller H
    J Med Virol; 1985 Apr; 15(4):323-33. PubMed ID: 3981148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circularization of an RNA template via long-range base pairing is critical for hepadnaviral reverse transcription.
    Shin MK; Kim JH; Ryu DK; Ryu WS
    Virology; 2008 Feb; 371(2):362-73. PubMed ID: 17988705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory activity of dioxolane purine analogs on wild-type and lamivudine-resistant mutants of hepadnaviruses.
    Seignères B; Pichoud C; Martin P; Furman P; Trépo C; Zoulim F
    Hepatology; 2002 Sep; 36(3):710-22. PubMed ID: 12198665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication.
    Jung J; Hwang SG; Chwae YJ; Park S; Shin HJ; Kim K
    J Virol; 2014 Aug; 88(16):8754-67. PubMed ID: 24850741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of reverse transcription.
    Hu K; Beck J; Nassal M
    Nucleic Acids Res; 2004; 32(14):4377-89. PubMed ID: 15314208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations within DR2 independently reduce the amount of both minus- and plus-strand DNA synthesized during duck hepatitis B virus replication.
    Loeb DD; Tian R; Gulya KJ
    J Virol; 1996 Dec; 70(12):8684-90. PubMed ID: 8970995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of human and duck hepatitis B virus by 2',3'-dideoxy-3'-fluoroguanosine in vitro.
    Schröder I; Holmgren B; Oberg M; Löfgren B
    Antiviral Res; 1998 Jan; 37(1):57-66. PubMed ID: 9497073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of novel hepadnaviral RNA species accumulated in hepatoma cells treated with viral DNA polymerase inhibitors.
    Zhang P; Liu F; Guo F; Zhao Q; Chang J; Guo JT
    Antiviral Res; 2016 Jul; 131():40-8. PubMed ID: 27083116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro characterization of the anti-hepatitis B virus activity and cross-resistance profile of 2',3'-dideoxy-3'-fluoroguanosine.
    Jacquard AC; Brunelle MN; Pichoud C; Durantel D; Carrouée-Durantel S; Trepo C; Zoulim F
    Antimicrob Agents Chemother; 2006 Mar; 50(3):955-61. PubMed ID: 16495257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infection of ducklings with virus particles containing linear double-stranded duck hepatitis B virus DNA: illegitimate replication and reversion.
    Yang W; Summers J
    J Virol; 1998 Nov; 72(11):8710-7. PubMed ID: 9765413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence identity of the direct repeats, DR1 and DR2, contributes to the discrimination between primer translocation and in situ priming during replication of the duck hepatitis B virus.
    Habig JW; Loeb DD
    J Mol Biol; 2006 Nov; 364(1):32-43. PubMed ID: 17005197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Replication of DHBV genomes with mutations at the sites of initiation of minus- and plus-strand DNA synthesis.
    Condreay LD; Wu TT; Aldrich CE; Delaney MA; Summers J; Seeger C; Mason WS
    Virology; 1992 May; 188(1):208-16. PubMed ID: 1566574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.