BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17409548)

  • 1. Studies on panax acetylenes: absolute structure of a new panax acetylene, and inhibitory effects of related acetylenes on the growth of L-1210 cells.
    Satoh Y; Satoh M; Isobe K; Mohri K; Yoshida Y; Fujimoto Y
    Chem Pharm Bull (Tokyo); 2007 Apr; 55(4):561-4. PubMed ID: 17409548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxic acetylenes from Panax quinquefolium.
    Fujimoto Y; Satoh M; Takeuchi N; Kirisawa M
    Chem Pharm Bull (Tokyo); 1991 Feb; 39(2):521-3. PubMed ID: 2054881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of panax acetylenes: chiral syntheses of acetylpanaxydol, PQ-3 and panaxydiol.
    Satoh M; Watanabe M; Kawahata M; Mohri K; Yoshida Y; Isobe K; Fujimoto Y
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):418-21. PubMed ID: 15056955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoenzymatic asymmetric total syntheses of antitumor agents (3R,9R,10R)- and (3S,9R,10R)-Panaxytriol and (R)- and (S)-Falcarinol from Panax ginseng using an enantioconvergent enzyme-triggered cascade reaction.
    Mayer SF; Steinreiber A; Orru RV; Faber K
    J Org Chem; 2002 Dec; 67(26):9115-21. PubMed ID: 12492310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and absolute configurations of the cytotoxic polyacetylenes isolated from the callus of Panax ginseng.
    Fujimoto Y; Satoh M; Takeuchi N; Kirisawa M
    Chem Pharm Bull (Tokyo); 1990 Jun; 38(6):1447-50. PubMed ID: 2093310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Kinugasa reaction of cyclic nitrones and nonracemic acetylenes.
    Stecko S; Mames A; Furman B; Chmielewski M
    J Org Chem; 2009 Apr; 74(8):3094-100. PubMed ID: 19323546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxic Properties of C
    Kim R; Son SR; Lee NK; Kim JY; An G; Choi JH; Jang DS
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Polyacetylene compounds from Panax notoginsenoside].
    Rao G; Wang X; Jin W
    Zhong Yao Cai; 1997 Jun; 20(6):298-9. PubMed ID: 12572474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng.
    Rho MC; Lee HS; Lee SW; Chang JS; Kwon OE; Chung MY; Kim YK
    J Agric Food Chem; 2005 Feb; 53(4):919-22. PubMed ID: 15712998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography.
    Washida D; Kitanaka S
    Chem Pharm Bull (Tokyo); 2003 Nov; 51(11):1314-7. PubMed ID: 14600381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides.
    Yang WZ; Ye M; Qiao X; Liu CF; Miao WJ; Bo T; Tao HY; Guo DA
    Anal Chim Acta; 2012 Aug; 739():56-66. PubMed ID: 22819050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute structure of panaxytriol.
    Satoh M; Ishii M; Watanabe M; Isobe K; Uchiyama T; Fujimoto Y
    Chem Pharm Bull (Tokyo); 2002 Jan; 50(1):126-8. PubMed ID: 11824573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new cytotoxic chlorine-containing polyacetylene from the callus of Panax ginseng.
    Fujimoto Y; Satoh M
    Chem Pharm Bull (Tokyo); 1988 Oct; 36(10):4206-8. PubMed ID: 3245997
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of a polyacetylene from Panax ginseng on Na+ currents in rat dorsal root ganglion neurons.
    Choi SJ; Kim TH; Shin YK; Lee CS; Park M; Lee HS; Song JH
    Brain Res; 2008 Jan; 1191():75-83. PubMed ID: 18163979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial polyacetylenes from Panax ginseng hairy root culture.
    Fukuyama N; Shibuya M; Orihara Y
    Chem Pharm Bull (Tokyo); 2012; 60(3):377-80. PubMed ID: 22382419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Straightforward synthesis of panaxytriol: an active component of Red Ginseng.
    Yun H; Danishefsky SJ
    J Org Chem; 2003 May; 68(11):4519-22. PubMed ID: 12762760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent alpha-glucosidase inhibitors from the roots of Panax japonicus C. A. Meyer var. major.
    Chan HH; Sun HD; Reddy MV; Wu TS
    Phytochemistry; 2010 Aug; 71(11-12):1360-4. PubMed ID: 20493502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical analysis of Panax quinquefolius (North American ginseng): A review.
    Wang Y; Choi HK; Brinckmann JA; Jiang X; Huang L
    J Chromatogr A; 2015 Dec; 1426():1-15. PubMed ID: 26643719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyacetylene analogs, isolated from hairy roots of Panax ginseng, inhibit Acyl-CoA : cholesterol acyltransferase.
    Kwon BM; Ro SH; Kim MK; Nam JY; Jung HJ; Lee IR; Kim YK; Bok SH
    Planta Med; 1997 Dec; 63(6):552-3. PubMed ID: 9434610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total synthesis of (3R,9R,10R)-panaxytriol via tandem metathesis and metallotropic [1,3]-shift as a key step.
    Cho EJ; Lee D
    Org Lett; 2008 Jan; 10(2):257-9. PubMed ID: 18076184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.