BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17410210)

  • 1. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
    Metz AH; Hollis T; Eichman BF
    EMBO J; 2007 May; 26(9):2411-20. PubMed ID: 17410210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.
    Eichman BF; O'Rourke EJ; Radicella JP; Ellenberger T
    EMBO J; 2003 Oct; 22(19):4898-909. PubMed ID: 14517230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Escherichia coli AlkA in complex with undamaged DNA.
    Bowman BR; Lee S; Wang S; Verdine GL
    J Biol Chem; 2010 Nov; 285(46):35783-91. PubMed ID: 20843803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for 3-methyladenine recognition by 3-methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus.
    Zhu X; Yan X; Carter LG; Liu H; Graham S; Coote PJ; Naismith J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jun; 68(Pt 6):610-5. PubMed ID: 22684054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of substrate binding and enzymatic removal of a 3-methyladenine lesion from genomic DNA with TAG of MDR A. baumannii.
    Tomar JS; Narwal M; Kumar P; Peddinti RK
    Mol Biosyst; 2016 Oct; 12(11):3259-3265. PubMed ID: 27714027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model building of DNA repair enzyme 3-methyladenine DNA glycosylase-DNA complex.
    Yamagata Y; Fujii S
    Nucleic Acids Symp Ser; 1995; (34):7-8. PubMed ID: 8841525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized method for TAG protein homology modeling: In silico and experimental structural characterization.
    Tomar JS; Peddinti RK
    Int J Biol Macromol; 2016 Jul; 88():102-12. PubMed ID: 27017978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase.
    Lee S; Verdine GL
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18497-502. PubMed ID: 19841264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I.
    Cao C; Kwon K; Jiang YL; Drohat AC; Stivers JT
    J Biol Chem; 2003 Nov; 278(48):48012-20. PubMed ID: 13129925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.
    de Faria RC; Vila-Nova LG; Bitar M; Resende BC; Arantes LS; Rebelato AB; Azevedo VAC; Franco GR; Machado CR; Santos LLD; de Oliveira Lopes D
    Infect Genet Evol; 2016 Oct; 44():318-329. PubMed ID: 27456281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
    Hollis T; Ichikawa Y; Ellenberger T
    EMBO J; 2000 Feb; 19(4):758-66. PubMed ID: 10675345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats.
    Dalhus B; Helle IH; Backe PH; Alseth I; Rognes T; Bjørås M; Laerdahl JK
    Nucleic Acids Res; 2007; 35(7):2451-9. PubMed ID: 17395642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Dynamics of Damage Processing by Human DNA Glycosylase NEIL1.
    Kladova OA; Grin IR; Fedorova OS; Kuznetsov NA; Zharkov DO
    J Mol Biol; 2019 Mar; 431(6):1098-1112. PubMed ID: 30716333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Methyladenine DNA glycosylase I is an unexpected helix-hairpin-helix superfamily member.
    Drohat AC; Kwon K; Krosky DJ; Stivers JT
    Nat Struct Biol; 2002 Sep; 9(9):659-64. PubMed ID: 12161745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The substrate binding interface of alkylpurine DNA glycosylase AlkD.
    Mullins EA; Rubinson EH; Eichman BF
    DNA Repair (Amst); 2014 Jan; 13():50-4. PubMed ID: 24286669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA glycosylase recognition and catalysis.
    Fromme JC; Banerjee A; Verdine GL
    Curr Opin Struct Biol; 2004 Feb; 14(1):43-9. PubMed ID: 15102448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures.
    Backe PH; Simm R; Laerdahl JK; Dalhus B; Fagerlund A; Okstad OA; Rognes T; Alseth I; Kolstø AB; Bjørås M
    J Struct Biol; 2013 Jul; 183(1):66-75. PubMed ID: 23623903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli.
    Yamagata Y; Kato M; Odawara K; Tokuno Y; Nakashima Y; Matsushima N; Yasumura K; Tomita K; Ihara K; Fujii Y; Nakabeppu Y; Sekiguchi M; Fujii S
    Cell; 1996 Jul; 86(2):311-9. PubMed ID: 8706135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.