These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 17410601)

  • 21. Regulation of Kv4.2 channels by glutamate in cultured hippocampal neurons.
    Lei Z; Deng P; Xu ZC
    J Neurochem; 2008 Jul; 106(1):182-92. PubMed ID: 18363830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of ATP-sensitive K channels protects hippocampal CA1 neurons from hypoxia by suppressing p53 expression.
    Huang L; Li W; Li B; Zou F
    Neurosci Lett; 2006 May; 398(1-2):34-8. PubMed ID: 16426753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices.
    Lipski J; Park TI; Li D; Lee SC; Trevarton AJ; Chung KK; Freestone PS; Bai JZ
    Brain Res; 2006 Mar; 1077(1):187-99. PubMed ID: 16483552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variations in ATP-sensitive K+ channel activity provide evidence for inherent metabolic oscillations in pancreatic beta-cells.
    Dryselius S; Lund PE; Gylfe E; Hellman B
    Biochem Biophys Res Commun; 1994 Nov; 205(1):880-5. PubMed ID: 7999126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of extracellular pH on vasopressin inhibition of ATP-sensitive K+ channels in vascular smooth muscle cells.
    Kawano T; Tanaka K; Nazari H; Oshita S; Takahashi A; Nakaya Y
    Anesth Analg; 2007 Dec; 105(6):1714-9, table of contents. PubMed ID: 18042872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress.
    Liu C; Cotten JF; Schuyler JA; Fahlman CS; Au JD; Bickler PE; Yost CS
    Brain Res; 2005 Jan; 1031(2):164-73. PubMed ID: 15649441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prenatal stress on the kinetic properties of Ca2+ and K+ channels in offspring hippocampal CA3 pyramidal neurons.
    Cai Q; Zhu Z; Li H; Fan X; Jia N; Bai Z; Song L; Li X; Liu J
    Life Sci; 2007 Jan; 80(7):681-9. PubMed ID: 17123551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes.
    Garg V; Jiao J; Hu K
    Cardiovasc Res; 2009 Apr; 82(1):51-8. PubMed ID: 19181933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Properties of KATP channels in hippocampal CA1 pyramidal neurons from adult rats].
    Zhou YJ; Tong ZQ; Gao TM
    Sheng Li Xue Bao; 2001 Oct; 53(5):344-8. PubMed ID: 11833416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of cholesterol levels on the excitability of rat hippocampal neurons.
    Guo J; Chi S; Xu H; Jin G; Qi Z
    Mol Membr Biol; 2008 Apr; 25(3):216-23. PubMed ID: 18428037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of isoflurane and ketamine on ATP-sensitive K channels in rat substantia nigra.
    Ishiwa D; Kamiya Y; Itoh H; Saito Y; Ohtsuka T; Yamada Y; Andoh T
    Neuropharmacology; 2004 Jun; 46(8):1201-12. PubMed ID: 15111027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein.
    Furukawa K; Barger SW; Blalock EM; Mattson MP
    Nature; 1996 Jan; 379(6560):74-8. PubMed ID: 8538744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [ATP-activated single ion channel and its properties in cerebral cortical neurons of neonatal rat].
    Ren J; Chen ZH; Chen PX
    Sheng Li Xue Bao; 1996 Jun; 48(3):256-62. PubMed ID: 9389183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. K(ATP)-dependent neurotransmitter release in the neuronal network of the rat caudate nucleus.
    Steinkamp M; Li T; Fuellgraf H; Moser A
    Neurochem Int; 2007 Jan; 50(1):159-63. PubMed ID: 16979266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-pore-domain potassium channels contribute to neuronal potassium release and glial potassium buffering in the rat hippocampus.
    Päsler D; Gabriel S; Heinemann U
    Brain Res; 2007 Oct; 1173():14-26. PubMed ID: 17850772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulation of the potassium channel Kv1.1 and its effect on neuronal excitability in rat sensory neurons.
    Chi XX; Nicol GD
    J Neurophysiol; 2007 Nov; 98(5):2683-92. PubMed ID: 17855588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin activates ATP-sensitive potassium channels via phosphatidylinositol 3-kinase in cultured vascular smooth muscle cells.
    Yasui S; Mawatari K; Kawano T; Morizumi R; Hamamoto A; Furukawa H; Koyama K; Nakamura A; Hattori A; Nakano M; Harada N; Hosaka T; Takahashi A; Oshita S; Nakaya Y
    J Vasc Res; 2008; 45(3):233-43. PubMed ID: 18097147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carisbamate, a novel neuromodulator, inhibits voltage-gated sodium channels and action potential firing of rat hippocampal neurons.
    Liu Y; Yohrling GJ; Wang Y; Hutchinson TL; Brenneman DE; Flores CM; Zhao B
    Epilepsy Res; 2009 Jan; 83(1):66-72. PubMed ID: 19013768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.