These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17410787)

  • 1. Sorption and inhibited dehydrohalogenation of 2,2-dichloropropane in micropores of dealuminated Y zeolites.
    Cheng H; Reinhard M
    Environ Sci Technol; 2007 Mar; 41(6):1934-41. PubMed ID: 17410787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rate of 2,2-dichloropropane transformation in mineral micropores: implications of sorptive preservation for fate and transport of organic contaminants in the subsurface.
    Cheng H; Reinhard M
    Environ Sci Technol; 2008 Apr; 42(8):2879-85. PubMed ID: 18497138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals.
    Cheng H; Reinhard M
    Environ Sci Technol; 2006 Dec; 40(24):7694-701. PubMed ID: 17256515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.
    Cheng H; Reinhard M
    Environ Sci Technol; 2006 Jun; 40(11):3595-602. PubMed ID: 16786699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-induced degradation of atrazine sorbed in mineral micropores.
    Hu E; Cheng H; Hu Y
    Environ Sci Technol; 2012 May; 46(9):5067-76. PubMed ID: 22489838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.
    Yang H; Hu Y; Cheng H
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19266-80. PubMed ID: 27364487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.
    Cheng H; Reinhard M
    J Hazard Mater; 2010 Jul; 179(1-3):596-603. PubMed ID: 20388581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic effect of transition metals on microwave-induced degradation of atrazine in mineral micropores.
    Hu E; Cheng H
    Water Res; 2014 Jun; 57():8-19. PubMed ID: 24698722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores.
    Li J; Werth CJ
    Environ Sci Technol; 2004 Jan; 38(2):440-8. PubMed ID: 14750718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and mutagenicity of source water contaminants 1,3-dichloropropane and 2,2-dichloropropane.
    Tornero-Velez R; Ross MK; Granville C; Laskey J; Jones JP; DeMarini DM; Evans MV
    Drug Metab Dispos; 2004 Jan; 32(1):123-31. PubMed ID: 14709629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a novel microwave-based treatment technology for atrazine removal and destruction: Sorbent reusability and chemical stability, and effect of water matrices.
    Hu E; Hu Y; Cheng H
    J Hazard Mater; 2015 Dec; 299():444-52. PubMed ID: 26241770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites.
    Li J; Werth CJ
    Environ Sci Technol; 2001 Feb; 35(3):568-74. PubMed ID: 11351730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive removal of α-endosulfan from water by hydrophobic zeolites. An isothermal study.
    Yonli AH; Batonneau-Gener I; Koulidiati J
    J Hazard Mater; 2012 Feb; 203-204():357-62. PubMed ID: 22226714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel organo-zeolite adduct for environmental applications: sorption of phenol.
    Leone V; Canzano S; Iovino P; Salvestrini S; Capasso S
    Chemosphere; 2013 Apr; 91(3):415-20. PubMed ID: 23427860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly dealuminated Y zeolite as efficient adsorbent for the hydrophobic fraction from wastewater treatment plants effluents.
    Navalon S; Alvaro M; Garcia H
    J Hazard Mater; 2009 Jul; 166(1):553-60. PubMed ID: 19121893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.
    Xiong R; León M; Nikolakis V; Sandler SI; Vlachos DG
    ChemSusChem; 2014 Jan; 7(1):236-44. PubMed ID: 24106213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of Non-ionic Aromatic Organics to Mineral Micropores: Interactive Effect of Cation Hydration and Mineral Charge Density.
    Hu E; Zhao X; Pan S; Ye Z; He F
    Environ Sci Technol; 2019 Mar; 53(6):3067-3077. PubMed ID: 30794386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatography of mono- and disaccharides on granulated pellets of hydrophobic zeolites.
    Wach W; Buttersack C; Buchholz K
    J Chromatogr A; 2018 Nov; 1576():101-112. PubMed ID: 30297236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of water and ethanol in MFI-type zeolites.
    Zhang K; Lively RP; Noel JD; Dose ME; McCool BA; Chance RR; Koros WJ
    Langmuir; 2012 Jun; 28(23):8664-73. PubMed ID: 22568830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.
    Tran HN; Viet PV; Chao HP
    Ecotoxicol Environ Saf; 2018 Jan; 147():55-63. PubMed ID: 28826031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.