BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 17411040)

  • 1. Minor groove hydrogen bonds and the replication of unnatural base pairs.
    Matsuda S; Leconte AM; Romesberg FE
    J Am Chem Soc; 2007 May; 129(17):5551-7. PubMed ID: 17411040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymerase recognition and stability of fluoro-substituted pyridone nucleobase analogues.
    Hwang GT; Leconte AM; Romesberg FE
    Chembiochem; 2007 Sep; 8(13):1606-11. PubMed ID: 17647205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of minor-groove hydrogen-bond acceptors and donors on the stability and replication of four unnatural base pairs.
    Matsuda S; Henry AA; Schultz PG; Romesberg FE
    J Am Chem Soc; 2003 May; 125(20):6134-9. PubMed ID: 12785844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs.
    Matsuda S; Romesberg FE
    J Am Chem Soc; 2004 Nov; 126(44):14419-27. PubMed ID: 15521761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of unnatural base pair packing for polymerase recognition.
    Matsuda S; Henry AA; Romesberg FE
    J Am Chem Soc; 2006 May; 128(19):6369-75. PubMed ID: 16683801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of unnatural nucleobase stability and polymerase recognition.
    Henry AA; Yu C; Romesberg FE
    J Am Chem Soc; 2003 Aug; 125(32):9638-46. PubMed ID: 12904030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli.
    McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE
    Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efforts to expand the genetic alphabet: identification of a replicable unnatural DNA self-pair.
    Henry AA; Olsen AG; Matsuda S; Yu C; Geierstanger BH; Romesberg FE
    J Am Chem Soc; 2004 Jun; 126(22):6923-31. PubMed ID: 15174862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of an unnatural base pair toward natural-like replication.
    Seo YJ; Hwang GT; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Mar; 131(9):3246-52. PubMed ID: 19256568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and selectivity of unnatural DNA with five-membered-ring nucleobase analogues.
    Berger M; Luzzi SD; Henry AA; Romesberg FE
    J Am Chem Soc; 2002 Feb; 124(7):1222-6. PubMed ID: 11841290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair.
    Betz K; Kimoto M; Diederichs K; Hirao I; Marx A
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):12000-12003. PubMed ID: 28594080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unnatural substrate repertoire of A, B, and X family DNA polymerases.
    Hwang GT; Romesberg FE
    J Am Chem Soc; 2008 Nov; 130(44):14872-82. PubMed ID: 18847263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds: analysis by single-turnover kinetics.
    Potapova O; Chan C; DeLucia AM; Helquist SA; Kool ET; Grindley ND; Joyce CM
    Biochemistry; 2006 Jan; 45(3):890-8. PubMed ID: 16411765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA.
    Spratt TE
    Biochemistry; 2001 Mar; 40(9):2647-52. PubMed ID: 11258875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Molecular Crowding on DNA Polymerase Reactions along Unnatural DNA Templates.
    Takahashi S; Herdewijn P; Sugimoto N
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32927591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases.
    Morales JC; Kool ET
    Biochemistry; 2000 Oct; 39(42):12979-88. PubMed ID: 11041863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent effects on the pairing and polymerase recognition of simple unnatural base pairs.
    Hwang GT; Romesberg FE
    Nucleic Acids Res; 2006; 34(7):2037-45. PubMed ID: 16617144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond A, C, G and T: augmenting nature's alphabet.
    Henry AA; Romesberg FE
    Curr Opin Chem Biol; 2003 Dec; 7(6):727-33. PubMed ID: 14644182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical characterization of the conformational features of unnatural oligonucleotides containing a six nucleotide genetic alphabet.
    Wang W; Sheng X; Zhang S; Huang F; Sun C; Liu J; Chen D
    Phys Chem Chem Phys; 2016 Oct; 18(41):28492-28501. PubMed ID: 27711557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.