BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 17411085)

  • 1. Stacking effects on local structure in RNA: changes in the structure of tandem GA pairs when flanking GC pairs are replaced by isoG-isoC pairs.
    Chen G; Kierzek R; Yildirim I; Krugh TR; Turner DH; Kennedy SD
    J Phys Chem B; 2007 Jun; 111(24):6718-27. PubMed ID: 17411085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs.
    Yildirim I; Stern HA; Sponer J; Spackova N; Turner DH
    J Chem Theory Comput; 2009 Aug; 5(8):2088-2100. PubMed ID: 20090924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear Magnetic Resonance Reveals That GU Base Pairs Flanking Internal Loops Can Adopt Diverse Structures.
    Berger KD; Kennedy SD; Turner DH
    Biochemistry; 2019 Feb; 58(8):1094-1108. PubMed ID: 30702283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structures of (rGCUGAGGCU)2 and (rGCGGAUGCU)2: probing the structural features that shape the thermodynamic stability of GA pairs.
    Tolbert BS; Kennedy SD; Schroeder SJ; Krugh TR; Turner DH
    Biochemistry; 2007 Feb; 46(6):1511-22. PubMed ID: 17279616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the thermodynamic stability of small asymmetric internal loops in RNA.
    Schroeder SJ; Turner DH
    Biochemistry; 2000 Aug; 39(31):9257-74. PubMed ID: 10924119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of an RNA internal loop with three consecutive sheared GA pairs.
    Chen G; Znosko BM; Kennedy SD; Krugh TR; Turner DH
    Biochemistry; 2005 Mar; 44(8):2845-56. PubMed ID: 15723528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR studies of the effect of GA-AG base pairs to the active conformation of hammerhead ribozyme.
    Amano M
    Nucleic Acids Symp Ser (Oxf); 2006; (50):43-4. PubMed ID: 17150808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CA(+) pair adjacent to a sheared GA or AA pair stabilizes size-symmetric RNA internal loops.
    Chen G; Kennedy SD; Turner DH
    Biochemistry; 2009 Jun; 48(24):5738-52. PubMed ID: 19485416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature NMR studies on inosine wobble base pairs.
    Janke EM; Riechert-Krause F; Weisz K
    J Phys Chem B; 2011 Jul; 115(26):8569-74. PubMed ID: 21644523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR structures of r(GCAGGCGUGC)2 and determinants of stability for single guanosine-guanosine base pairs.
    Burkard ME; Turner DH
    Biochemistry; 2000 Sep; 39(38):11748-62. PubMed ID: 10995243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA.
    Chen G; Kennedy SD; Qiao J; Krugh TR; Turner DH
    Biochemistry; 2006 Jun; 45(22):6889-903. PubMed ID: 16734425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the role of base stacking in nucleic acids. MD and QM analysis of tandem GA base pairs in RNA duplexes.
    Morgado CA; Svozil D; Turner DH; Šponer J
    Phys Chem Chem Phys; 2012 Sep; 14(36):12580-91. PubMed ID: 22722325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of an RNA internal loop consisting of tandem C-A+ base pairs.
    Jang SB; Hung LW; Chi YI; Holbrook EL; Carter RJ; Holbrook SR
    Biochemistry; 1998 Aug; 37(34):11726-31. PubMed ID: 9718295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent.
    Heus HA; Wijmenga SS; Hoppe H; Hilbers CW
    J Mol Biol; 1997 Aug; 271(1):147-58. PubMed ID: 9300061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of (rGCGGACGC)2 by two-dimensional NMR and the iterative relaxation matrix approach.
    Wu M; Turner DH
    Biochemistry; 1996 Jul; 35(30):9677-89. PubMed ID: 8703939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic stabilities of internal loops with GU closing pairs in RNA.
    Schroeder SJ; Turner DH
    Biochemistry; 2001 Sep; 40(38):11509-17. PubMed ID: 11560499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs.
    Szymanski ES; Kimsey IJ; Al-Hashimi HM
    J Am Chem Soc; 2017 Mar; 139(12):4326-4329. PubMed ID: 28290687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.