These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17411115)

  • 1. Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum.
    Schnieders MJ; Baker NA; Ren P; Ponder JW
    J Chem Phys; 2007 Mar; 126(12):124114. PubMed ID: 17411115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum.
    Schnieders MJ; Ponder JW
    J Chem Theory Comput; 2007 Nov; 3(6):2083-97. PubMed ID: 26636202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field.
    Corrigan RA; Qi G; Thiel AC; Lynn JR; Walker BD; Casavant TL; Lagardere L; Piquemal JP; Ponder JW; Ren P; Schnieders MJ
    J Chem Theory Comput; 2021 Apr; 17(4):2323-2341. PubMed ID: 33769814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A; Lin FY; Roux B; MacKerell AD
    J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Boundary-Integral Approach for the Poisson-Boltzmann Equation with Polarizable Force Fields.
    Cooper CD
    J Comput Chem; 2019 Jul; 40(18):1680-1692. PubMed ID: 30889283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins.
    Shi Y; Xia Z; Zhang J; Best R; Wu C; Ponder JW; Ren P
    J Chem Theory Comput; 2013; 9(9):4046-4063. PubMed ID: 24163642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids.
    Chu H; Peng X; Li Y; Zhang Y; Li G
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29301229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential.
    Jiao D; Zhang J; Duke RE; Li G; Schnieders MJ; Ren P
    J Comput Chem; 2009 Aug; 30(11):1701-11. PubMed ID: 19399779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum polarizable force field within the Poisson-Boltzmann framework.
    Tan YH; Tan C; Wang J; Luo R
    J Phys Chem B; 2008 Jun; 112(25):7675-88. PubMed ID: 18507452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing the Effects of Explicit Waters in Implicit Electrostatics Modeling: Qualitative Justification of Gaussian-Based Dielectric Models in DelPhi.
    Chakravorty A; Panday S; Pahari S; Zhao S; Alexov E
    J Chem Inf Model; 2020 Apr; 60(4):2229-2246. PubMed ID: 32155062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models.
    Wagoner J; Baker NA
    J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized parameters for continuum solvation calculations with carbohydrates.
    Green DF
    J Phys Chem B; 2008 Apr; 112(16):5238-49. PubMed ID: 18386862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Representations and Response Models for Polarizable Force Fields.
    Li A; Voronin A; Fenley AT; Gilson MK
    J Phys Chem B; 2016 Aug; 120(33):8668-84. PubMed ID: 27248842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient formulation of polarizable Gaussian multipole electrostatics for biomolecular simulations.
    Wei H; Qi R; Wang J; Cieplak P; Duan Y; Luo R
    J Chem Phys; 2020 Sep; 153(11):114116. PubMed ID: 32962395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic formulation of nonlocal electrostatics in polar liquids embedding polarizable ions.
    Buyukdagli S; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063201. PubMed ID: 23848796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules--applications in biotechnology.
    Neves-Petersen MT; Petersen SB
    Biotechnol Annu Rev; 2003; 9():315-95. PubMed ID: 14650935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.