These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17411190)

  • 1. Computer-controlled susceptometer for investigating the linear and nonlinear dielectric response.
    Miga S; Dec J; Kleemann W
    Rev Sci Instrum; 2007 Mar; 78(3):033902. PubMed ID: 17411190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection.
    Thibierge C; L'Hôte D; Ladieu F; Tourbot R
    Rev Sci Instrum; 2008 Oct; 79(10):103905. PubMed ID: 19044727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex magnetic susceptibility setup for spectroscopy in the extremely low-frequency range.
    Kuipers BW; Bakelaar IA; Klokkenburg M; Erné BH
    Rev Sci Instrum; 2008 Jan; 79(1):013901. PubMed ID: 18248044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple capacitive cell for the measurement of liquids dielectric constant under transient thermal conditions.
    Baudot A; Bret JL
    Cryo Letters; 2003; 24(1):5-16. PubMed ID: 12644848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New frequency/voltage converters for ac-electrogravimetric measurements based on fast quartz crystal microbalance.
    Gabrielli C; Perrot H; Rose D; Rubin A; Toqué JP; Pham MC; Piro B
    Rev Sci Instrum; 2007 Jul; 78(7):074103. PubMed ID: 17672777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A room-temperature alternating current susceptometer--data analysis, calibration, and test.
    Alderighi M; Bevilacqua G; Biancalana V; Khanbekyan A; Dancheva Y; Moi L
    Rev Sci Instrum; 2013 Dec; 84(12):125105. PubMed ID: 24387466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of some random-barrier, continuous-time random-walk, and other models for the analysis of wide-range frequency response of ion-conducting materials.
    Macdonald JR
    J Phys Chem B; 2009 Jul; 113(27):9175-82. PubMed ID: 19526997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of low-temperature ac susceptometers with a copper cylinder standard.
    Chen DX; Skumryev V
    Rev Sci Instrum; 2010 Feb; 81(2):025104. PubMed ID: 20192515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for measuring the losses and loading of a quartz crystal microbalance.
    Kankare J; Loikas K; Salomäki M
    Anal Chem; 2006 Mar; 78(6):1875-82. PubMed ID: 16536423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials.
    Hasar UC
    Rev Sci Instrum; 2009 May; 80(5):056103. PubMed ID: 19485540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved frequency/voltage converters for fast quartz crystal microbalance applications.
    Torres R; García JV; Arnau A; Perrot H; Kim LT; Gabrielli C
    Rev Sci Instrum; 2008 Apr; 79(4):045113. PubMed ID: 18447558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear alternating current responses of electrorheological solids.
    Huang JP
    J Phys Chem B; 2005 Mar; 109(11):4824-8. PubMed ID: 16863135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical properties of a ferroelectric capacitor observed through nonlinear time series analysis.
    Hegger R; Kantz H; Schmuser F; Diestelhorst M; Kapsch RP; Beige H
    Chaos; 1998 Sep; 8(3):727-736. PubMed ID: 12779778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a second generation torsion balance based on a spherical superconducting suspension.
    Hammond GD; Speake CC; Matthews AJ; Rocco E; Peña-Arellano F
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):025103. PubMed ID: 18315325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated circuit ac mutual inductance bridge for magnetic susceptibility measurements.
    Brodbeck CM; Bukrey RR; Hoeksema JT
    Rev Sci Instrum; 1978 Sep; 49(9):1279. PubMed ID: 18699301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standard-independent estimation of dielectric permittivity with microdielectric fringe-effect sensors.
    Choi YH; Skliar M
    Anal Chem; 2005 Feb; 77(3):871-7. PubMed ID: 15679356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated setup to measure the linear and nonlinear magnetic ac-susceptibility down to 4 K with higher accuracy.
    Dutta B; Kumar K; Ghodke N; Banerjee A
    Rev Sci Instrum; 2020 Dec; 91(12):123905. PubMed ID: 33379955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed sensing based on Brownian relaxation of magnetic nanoparticles using a compact AC susceptometer.
    Park K; Harrah T; Goldberg EB; Guertin RP; Sonkusale S
    Nanotechnology; 2011 Feb; 22(8):085501. PubMed ID: 21242618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric method of ac loss measurement in a rotating magnetic field.
    Ghoshal PK; Coombs TA; Campbell AM
    Rev Sci Instrum; 2010 Jul; 81(7):074702. PubMed ID: 20687748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.