BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17411348)

  • 1. A comparative study of machine learning algorithms applied to predictive toxicology data mining.
    Neagu DC; Guo G; Trundle PR; Cronin MT
    Altern Lab Anim; 2007 Mar; 35(1):25-32. PubMed ID: 17411348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds.
    Helma C; Cramer T; Kramer S; De Raedt L
    J Chem Inf Comput Sci; 2004; 44(4):1402-11. PubMed ID: 15272848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model.
    Judson R; Elloumi F; Setzer RW; Li Z; Shah I
    BMC Bioinformatics; 2008 May; 9():241. PubMed ID: 18489778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods.
    Asadollahi-Baboli M
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):826-31. PubMed ID: 23068157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicity prediction by adaptive fuzzy partitioning: comparing descriptors computed on 2D and 3D structures.
    Piclin N; Pintore M; Wechman C; Roncaglioni A; Benfenati E; Chretien JR
    SAR QSAR Environ Res; 2006 Apr; 17(2):225-51. PubMed ID: 16644559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of combinatorial clustering methods on pharmacological data sets represented by machine learning-selected real molecular descriptors.
    Rivera-Borroto OM; Marrero-Ponce Y; García-de la Vega JM; Grau-Ábalo Rdel C
    J Chem Inf Model; 2011 Dec; 51(12):3036-49. PubMed ID: 22098113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Budget constrained non-monotonic feature selection.
    Yang H; Xu Z; Lyu MR; King I
    Neural Netw; 2015 Nov; 71():214-24. PubMed ID: 26433049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques.
    Eitrich T; Kless A; Druska C; Meyer W; Grotendorst J
    J Chem Inf Model; 2007; 47(1):92-103. PubMed ID: 17238253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on machine learning methods for in silico toxicity prediction.
    Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CARSVM: a class association rule-based classification framework and its application to gene expression data.
    Kianmehr K; Alhajj R
    Artif Intell Med; 2008 Sep; 44(1):7-25. PubMed ID: 18586476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure.
    Liu J; Mansouri K; Judson RS; Martin MT; Hong H; Chen M; Xu X; Thomas RS; Shah I
    Chem Res Toxicol; 2015 Apr; 28(4):738-51. PubMed ID: 25697799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.
    Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I
    Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowledge discovery and data mining in toxicology.
    Helma C; Gottmann E; Kramer S
    Stat Methods Med Res; 2000 Aug; 9(4):329-58. PubMed ID: 11084712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting representative data and generating synthetic samples to improve learning accuracy with imbalanced data sets.
    Li DC; Hu SC; Lin LS; Yeh CW
    PLoS One; 2017; 12(8):e0181853. PubMed ID: 28771522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicology analysis by means of the JSM-method.
    Blinova VG; Dobrynin DA; Finn VK; Kuznetsov SO; Pankratova ES
    Bioinformatics; 2003 Jul; 19(10):1201-7. PubMed ID: 12835262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches.
    Zhou Y; Wang Z; Huang Z; Li W; Chen Y; Yu X; Tang Y; Liu G
    J Appl Toxicol; 2024 Jun; 44(6):892-907. PubMed ID: 38329145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties.
    Helma C; Kramer S; Pfahringer B; Gottmann E
    Environ Health Perspect; 2000 Nov; 108(11):1029-33. PubMed ID: 11102292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity.
    Balraadjsing S; Peijnenburg WJGM; Vijver MG
    Chemosphere; 2022 Nov; 307(Pt 2):135930. PubMed ID: 35961453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.