BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17412358)

  • 1. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae.
    Régnière J; Bentz B
    J Insect Physiol; 2007 Jun; 53(6):559-72. PubMed ID: 17412358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism and cold tolerance of overwintering adult mountain pine beetles (Dendroctonus ponderosae): evidence of facultative diapause?
    Lester JD; Irwin JT
    J Insect Physiol; 2012 Jun; 58(6):808-15. PubMed ID: 22426083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae.
    Bonnett TR; Robert JA; Pitt C; Fraser JD; Keeling CI; Bohlmann J; Huber DP
    Insect Biochem Mol Biol; 2012 Dec; 42(12):890-901. PubMed ID: 22982448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata.
    Watanabe M
    Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold tolerance and supercooling capacity in overwintering adults of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae).
    Soudi Sh; Moharramipour S
    Environ Entomol; 2011 Dec; 40(6):1546-53. PubMed ID: 22217772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the effects of developmental variation on insect phenology.
    Yurk BP; Powell JA
    Bull Math Biol; 2010 Aug; 72(6):1334-60. PubMed ID: 20108124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles.
    Thompson KM; Huber DPW; Murray BW
    PLoS One; 2020; 15(1):e0227203. PubMed ID: 31914144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal.
    Gayathri Samarasekera GD; Bartell NV; Lindgren BS; Cooke JE; Davis CS; James PM; Coltman DW; Mock KE; Murray BW
    Mol Ecol; 2012 Jun; 21(12):2931-48. PubMed ID: 22554298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal temperature alone can synchronize life cycles.
    Powell JA; Jenkins JL; Logan JA; Bentz BJ
    Bull Math Biol; 2000 Sep; 62(5):977-98. PubMed ID: 11016093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae).
    Mock KE; Bentz BJ; O'neill EM; Chong JP; Orwin J; Pfrender ME
    Mol Ecol; 2007 Feb; 16(3):553-68. PubMed ID: 17257113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts.
    Goodsman DW; Erbilgin N; Lieffers VJ
    Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First in line or first in time? Effects of settlement order and arrival date on reproduction in a group-living beetle Dendroctonus ponderosae.
    Latty TM; Reid ML
    J Anim Ecol; 2009 May; 78(3):549-55. PubMed ID: 19292705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The freeze-avoiding mountain pine beetle (Dendroctonus ponderosae) survives prolonged exposure to stressful cold by mitigating ionoregulatory collapse.
    Andersen MK; Roe AD; Liu Y; Musso AE; Fudlosid S; Haider F; Evenden ML; MacMillan HA
    J Exp Biol; 2024 Apr; 227(9):. PubMed ID: 38682690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The push-pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines.
    Gillette NE; Mehmel CJ; Mori SR; Webster JN; Wood DL; Erbilgin N; Owen DR
    Environ Entomol; 2012 Dec; 41(6):1575-86. PubMed ID: 23321106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change.
    Dahlhoff EP; Fearnley SL; Bruce DA; Gibbs AG; Stoneking R; McMillan DM; Deiner K; Smiley JT; Rank NE
    Physiol Biochem Zool; 2008; 81(6):718-32. PubMed ID: 18956974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold Tolerance of Mountain Pine Beetle (Coleoptera: Curculionidae) Pupae.
    Bleiker KP; Smith GD
    Environ Entomol; 2019 Dec; 48(6):1412-1417. PubMed ID: 31696927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect seasonality: circle map analysis of temperature-driven life cycles.
    Powell JA; Logan JA
    Theor Popul Biol; 2005 May; 67(3):161-79. PubMed ID: 15808334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold Tolerance of Mountain Pine Beetle (Coleoptera: Curculionidae) Eggs From the Historic and Expanded Ranges.
    Bleiker KP; Smith GD; Humble LM
    Environ Entomol; 2017 Oct; 46(5):1165-1170. PubMed ID: 28961978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three models predicting developmental milestones given environmental and individual variation.
    Gilbert E; Powell JA; Logan JA; Bentz BJ
    Bull Math Biol; 2004 Nov; 66(6):1821-50. PubMed ID: 15522356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.