BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 17412398)

  • 21. 2. Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters.
    Sirivedhin T; Gray KA
    Water Res; 2005 Mar; 39(6):1025-36. PubMed ID: 15766957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DPB formation in breakpoint chlorination of wastewater.
    Yang X; Shang C; Huang JC
    Water Res; 2005 Nov; 39(19):4755-4767. PubMed ID: 16288796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced coagulation of disinfection by-products precursors in Istanbul water supply.
    Uyak V; Toroz I
    Environ Technol; 2005 Mar; 26(3):261-6. PubMed ID: 15881022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa.
    Fang J; Ma J; Yang X; Shang C
    Water Res; 2010 Mar; 44(6):1934-40. PubMed ID: 20060561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of water stagnation in residential cold and hot water plumbing on concentrations of trihalomethanes and haloacetic acids.
    Dion-Fortier A; Rodriguez MJ; Sérodes J; Proulx F
    Water Res; 2009 Jul; 43(12):3057-66. PubMed ID: 19476964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haloacetic acids in drinking water in the United Kingdom.
    Malliarou E; Collins C; Graham N; Nieuwenhuijsen MJ
    Water Res; 2005 Jul; 39(12):2722-30. PubMed ID: 15967473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong's drinking water).
    Hong HC; Liang Y; Han BP; Mazumder A; Wong MH
    Sci Total Environ; 2007 Oct; 385(1-3):48-54. PubMed ID: 17716706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemometric modeling and prediction of trihalomethane formation in Barcelona's water works plant.
    Platikanov S; Puig X; Martín J; Tauler R
    Water Res; 2007 Aug; 41(15):3394-406. PubMed ID: 17599385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of halogenated acetaldehydes, and occurrence in Canadian drinking water.
    Koudjonou B; Lebel GL; Dabeka L
    Chemosphere; 2008 Jun; 72(6):875-81. PubMed ID: 18499222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence of disinfection by-products in low DOC surface waters in Turkey.
    Ates N; Kaplan SS; Sahinkaya E; Kitis M; Dilek FB; Yetis U
    J Hazard Mater; 2007 Apr; 142(1-2):526-34. PubMed ID: 17034942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system.
    Rodriguez MJ; Sérodes JB; Levallois P
    Water Res; 2004 Dec; 38(20):4367-82. PubMed ID: 15556212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination.
    Chiang PC; Chang EE; Chuang CC; Liang CH; Huang CP
    Chemosphere; 2010 Jun; 80(3):327-33. PubMed ID: 20427073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disinfection by-products in filter backwash water: implications to water quality in recycle designs.
    McCormick NJ; Porter M; Walsh ME
    Water Res; 2010 Aug; 44(15):4581-9. PubMed ID: 20561666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian statistical modeling of disinfection byproduct (DBP) bromine incorporation in the ICR database.
    Francis RA; Vanbriesen JM; Small MJ
    Environ Sci Technol; 2010 Feb; 44(4):1232-9. PubMed ID: 20095529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exposure assessment in epidemiologic studies of adverse pregnancy outcomes and disinfection byproducts.
    King WD; Dodds L; Armson BA; Allen AC; Fell DB; Nimrod C
    J Expo Anal Environ Epidemiol; 2004 Nov; 14(6):466-72. PubMed ID: 15026776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing spatial fluctuations, temporal variability, and measurement error in estimated levels of disinfection by-products in tap water: implications for exposure assessment.
    Symanski E; Savitz DA; Singer PC
    Occup Environ Med; 2004 Jan; 61(1):65-72. PubMed ID: 14691275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of trihalomethanes from drinking water by nanofiltration membranes.
    Uyak V; Koyuncu I; Oktem I; Cakmakci M; Toroz I
    J Hazard Mater; 2008 Apr; 152(2):789-94. PubMed ID: 17768007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling daily variation of trihalomethane compounds in drinking water system, Houston, Texas.
    Chaib E; Moschandreas D
    J Hazard Mater; 2008 Mar; 151(2-3):662-8. PubMed ID: 17658688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental disinfection by-product formation potential following rainfall events.
    Delpla I; Rodriguez MJ
    Water Res; 2016 Nov; 104():340-348. PubMed ID: 27570135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Investigation on the levels of carbon-, nitrogen-, iodine-containing disinfection by-products in a water plant in Jiangsu province, China].
    Liu XL; Zheng WW; Wei X; Chen HY; Wang X; Zhang HM; Jiang SH; He GS; Qu WD
    Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Feb; 46(2):133-8. PubMed ID: 22490195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.