BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17412793)

  • 1. The biphasic force-velocity relationship in whole rat skeletal muscle in situ.
    Devrome AN; MacIntosh BR
    J Appl Physiol (1985); 2007 Jun; 102(6):2294-300. PubMed ID: 17412793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-velocity relationship during isometric and isotonic fatiguing contractions.
    Devrome AN; MacIntosh BR
    J Appl Physiol (1985); 2018 Sep; 125(3):706-714. PubMed ID: 29856265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of muscle fatigue using Hill's model.
    Tang CY; Stojanovic B; Tsui CP; Kojic M
    Biomed Mater Eng; 2005; 15(5):341-8. PubMed ID: 16179754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The high-force region of the force-velocity relation in frog skinned muscle fibres.
    Lou F; Sun YB
    Acta Physiol Scand; 1993 Jul; 148(3):243-52. PubMed ID: 8213180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified force-velocity equation for smooth muscle contraction.
    Wang J; Jiang H; Stephens NL
    J Appl Physiol (1985); 1994 Jan; 76(1):253-8. PubMed ID: 8175513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of shortening and velocity of shortening during repeated isotonic tetanic contractions in mammalian skeletal muscle.
    MacIntosh BR; Bryan SN
    Pflugers Arch; 2002 Mar; 443(5-6):804-12. PubMed ID: 11889579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The consequences of fibre heterogeneity on the force-velocity relation of skeletal muscle.
    Josephson RK; Edman KA
    Acta Physiol Scand; 1988 Mar; 132(3):341-52. PubMed ID: 3265837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression.
    Corr DT; Herzog W
    J Appl Physiol (1985); 2005 Jul; 99(1):252-60. PubMed ID: 15746298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The measurement of force/velocity relationships of fresh and fatigued human adductor pollicis muscle.
    De Ruiter CJ; Jones DA; Sargeant AJ; De Haan A
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):386-93. PubMed ID: 10483811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reports of the length dependence of fatigue are greatly exaggerated.
    MacNaughton MB; MacIntosh BR
    J Appl Physiol (1985); 2006 Jul; 101(1):23-9. PubMed ID: 16410374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isometric and concentric performance of electrically stimulated ankle plantar flexor muscles in intact rat.
    Willems ME; Stauber WT
    Exp Physiol; 1999 Mar; 84(2):379-89. PubMed ID: 10226178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ISOFIT: a model-based method to measure muscle-tendon properties simultaneously.
    Wagner H; Siebert T; Ellerby DJ; Marsh RL; Blickhan R
    Biomech Model Mechanobiol; 2005 Aug; 4(1):10-9. PubMed ID: 15895262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortening-induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle.
    de Ruiter CJ; de Haan A
    J Appl Physiol (1985); 2003 Jan; 94(1):69-74. PubMed ID: 12391074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lactate infusion on M-wave characteristics and force in the rat plantaris muscle during repeated stimulation in situ.
    Karelis AD; Marcil M; Péronnet F; Gardiner PF
    J Appl Physiol (1985); 2004 Jun; 96(6):2133-8. PubMed ID: 15003997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of stimulation frequency on force-velocity characteristics of in situ rat medial gastrocnemius muscle.
    de Haan A
    Exp Physiol; 1998 Jan; 83(1):77-84. PubMed ID: 9483421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic?
    Bobbert MF
    J Appl Physiol (1985); 2012 Jun; 112(12):1975-83. PubMed ID: 22442026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in contractile properties of human muscle in relationship to the loss of power and slowing of relaxation seen with fatigue.
    Jones DA; de Ruiter CJ; de Haan A
    J Physiol; 2006 Nov; 576(Pt 3):913-22. PubMed ID: 16916911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship.
    Miller RH; Umberger BR; Caldwell GE
    J Biomech; 2012 May; 45(8):1406-13. PubMed ID: 22405495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.