These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 17412901)
1. Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination. Marques AP; Rangel AO; Castro PM J Environ Qual; 2007; 36(3):646-53. PubMed ID: 17412901 [TBL] [Abstract][Full Text] [Related]
2. Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. Marques AP; Moreira H; Rangel AO; Castro PM J Hazard Mater; 2009 Jun; 165(1-3):174-9. PubMed ID: 18992988 [TBL] [Abstract][Full Text] [Related]
3. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. Lin W; Xiao T; Wu Y; Ao Z; Ning Z Chemosphere; 2012 Feb; 86(8):837-42. PubMed ID: 22154155 [TBL] [Abstract][Full Text] [Related]
4. Interactions of metals affect their distribution in tissues of Phragmites australis. Weis JS; Glover T; Weis P Environ Pollut; 2004 Oct; 131(3):409-15. PubMed ID: 15261404 [TBL] [Abstract][Full Text] [Related]
5. A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Díez Lázaro J; Kidd PS; Monterroso Martínez C Sci Total Environ; 2006 Feb; 354(2-3):265-77. PubMed ID: 16399000 [TBL] [Abstract][Full Text] [Related]
6. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228 [TBL] [Abstract][Full Text] [Related]
8. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
9. Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Zhang X; Xia H; Li Z; Zhuang P; Gao B Bioresour Technol; 2010 Mar; 101(6):2063-6. PubMed ID: 20005700 [TBL] [Abstract][Full Text] [Related]
10. Zinc accumulation potential and toxicity threshold determined for a metal-accumulating Populus canescens clone in a dose-response study. Langer I; Krpata D; Fitz WJ; Wenzel WW; Schweiger PF Environ Pollut; 2009 Oct; 157(10):2871-7. PubMed ID: 19446384 [TBL] [Abstract][Full Text] [Related]
11. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment. Lehmann C; Rebele F Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982 [TBL] [Abstract][Full Text] [Related]
12. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
13. Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil. Lepp NW; Madejón P J Environ Qual; 2007; 36(4):1123-31. PubMed ID: 17596620 [TBL] [Abstract][Full Text] [Related]
14. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339 [TBL] [Abstract][Full Text] [Related]
15. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Tani FH; Barrington S Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272 [TBL] [Abstract][Full Text] [Related]
16. Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Marques AP; Oliveira RS; Rangel AO; Castro PM Environ Pollut; 2008 Feb; 151(3):608-20. PubMed ID: 17507124 [TBL] [Abstract][Full Text] [Related]
17. Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Domínguez MT; Madrid F; Marañón T; Murillo JM Chemosphere; 2009 Jul; 76(4):480-6. PubMed ID: 19375778 [TBL] [Abstract][Full Text] [Related]
18. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Marques AP; Oliveira RS; Rangel AO; Castro PM Chemosphere; 2006 Nov; 65(7):1256-63. PubMed ID: 16650459 [TBL] [Abstract][Full Text] [Related]
19. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Sun Q; Ye ZH; Wang XR; Wong MH Phytochemistry; 2005 Nov; 66(21):2549-56. PubMed ID: 16225897 [TBL] [Abstract][Full Text] [Related]
20. Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Marques AP; Oliveira RS; Samardjieva KA; Pissarra J; Rangel AO; Castro PM Environ Pollut; 2007 Feb; 145(3):691-9. PubMed ID: 16905229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]