BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17413090)

  • 1. Consideration of betaine and one-carbon sources of N5-methyltetrahydrofolate for use in homocystinuria and neural tube defects.
    Benevenga NJ
    Am J Clin Nutr; 2007 Apr; 85(4):946-9. PubMed ID: 17413090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of betaine in the treatment of elevated homocysteine.
    Lawson-Yuen A; Levy HL
    Mol Genet Metab; 2006 Jul; 88(3):201-7. PubMed ID: 16545978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folate-responsive homocystinuria and "schizophrenia". A defect in methylation due to deficient 5,10-methylenetetrahydrofolate reductase activity.
    Freeman JM; Finkelstein JD; Mudd SH
    N Engl J Med; 1975 Mar; 292(10):491-6. PubMed ID: 1117892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism.
    Kožich V; Stabler S
    J Nutr; 2020 Oct; 150(Suppl 1):2506S-2517S. PubMed ID: 33000152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term betaine therapy in a murine model of cystathionine beta-synthase deficient homocystinuria: decreased efficacy over time reveals a significant threshold effect between elevated homocysteine and thrombotic risk.
    Maclean KN; Jiang H; Greiner LS; Allen RH; Stabler SP
    Mol Genet Metab; 2012 Mar; 105(3):395-403. PubMed ID: 22192524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human homocysteine catabolism: three major pathways and their relevance to development of arterial occlusive disease.
    Dudman NP; Guo XW; Gordon RB; Dawson PA; Wilcken DE
    J Nutr; 1996 Apr; 126(4 Suppl):1295S-300S. PubMed ID: 8642474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cystathionine beta-synthase deficiency: effects of betaine supplementation after methionine restriction in B6-nonresponsive homocystinuria.
    Singh RH; Kruger WD; Wang L; Pasquali M; Elsas LJ
    Genet Med; 2004; 6(2):90-5. PubMed ID: 15017331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derangement of hepatic polyamine, folate, and methionine cycle metabolism in cystathionine beta-synthase-deficient homocystinuria in the presence and absence of treatment: Possible implications for pathogenesis.
    Maclean KN; Jiang H; Phinney WN; Mclagan BM; Roede JR; Stabler SP
    Mol Genet Metab; 2021 Feb; 132(2):128-138. PubMed ID: 33483253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural tube defects, folic acid and methylation.
    Imbard A; Benoist JF; Blom HJ
    Int J Environ Res Public Health; 2013 Sep; 10(9):4352-89. PubMed ID: 24048206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylation and gene expression responses to ethanol feeding and betaine supplementation in the cystathionine beta synthase-deficient mouse.
    Medici V; Schroeder DI; Woods R; LaSalle JM; Geng Y; Shibata NM; Peerson J; Hodzic E; Dayal S; Tsukamoto H; Kharbanda KK; Tillman B; French SW; Halsted CH
    Alcohol Clin Exp Res; 2014 Jun; 38(6):1540-9. PubMed ID: 24730561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory evaluation of homocysteine remethylation disorders and classic homocystinuria: Long-term follow-up using a cohort of 123 patients.
    De Biase I; Gherasim C; La'ulu SL; Asamoah A; Longo N; Yuzyuk T
    Clin Chim Acta; 2020 Oct; 509():126-134. PubMed ID: 32533987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homocystinuria due to cystathionine beta-synthase deficiency--the effects of betaine treatment in pyridoxine-responsive patients.
    Wilcken DE; Dudman NP; Tyrrell PA
    Metabolism; 1985 Dec; 34(12):1115-21. PubMed ID: 3934499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow.
    McFadden JW; Girard CL; Tao S; Zhou Z; Bernard JK; Duplessis M; White HM
    J Dairy Sci; 2020 Jun; 103(6):5668-5683. PubMed ID: 32278559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway.
    Obeid R
    Nutrients; 2013 Sep; 5(9):3481-95. PubMed ID: 24022817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice.
    Gupta S; Wang L; Kruger WD
    J Inherit Metab Dis; 2016 Jan; 39(1):39-46. PubMed ID: 26231230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Betaine: a key modulator of one-carbon metabolism and homocysteine status.
    Ueland PM; Holm PI; Hustad S
    Clin Chem Lab Med; 2005; 43(10):1069-75. PubMed ID: 16197300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.
    Robinson JL; McBreairty LE; Randell EW; Brunton JA; Bertolo RF
    J Nutr Biochem; 2016 Sep; 35():81-86. PubMed ID: 27469995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcoholic liver disease and methionine metabolism.
    Kharbanda KK
    Semin Liver Dis; 2009 May; 29(2):155-65. PubMed ID: 19387915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine.
    Goulding CW; Postigo D; Matthews RG
    Biochemistry; 1997 Jul; 36(26):8082-91. PubMed ID: 9201956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homocysteinemia: depressed plasma serine levels.
    Dudman NP; Tyrrell PA; Wilcken DE
    Metabolism; 1987 Feb; 36(2):198-201. PubMed ID: 3100911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.