These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17413855)

  • 1. Assessment of infant brain development with frequency-domain near-infrared spectroscopy.
    Franceschini MA; Thaker S; Themelis G; Krishnamoorthy KK; Bortfeld H; Diamond SG; Boas DA; Arvin K; Grant PE
    Pediatr Res; 2007 May; 61(5 Pt 1):546-51. PubMed ID: 17413855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The validity and reliability of continuous-wave near-infrared spectroscopy for the assessment of leg blood volume during an orthostatic challenge.
    Stone KJ; Fryer SM; Ryan T; Stoner L
    Atherosclerosis; 2016 Aug; 251():234-239. PubMed ID: 27415611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of cerebral circulation and oxygen metabolism in infants using near-infrared light.
    Kusaka T; Isobe K; Yasuda S; Koyano K; Nakamura S; Nakamura M; Ueno M; Miki T; Itoh S
    Brain Dev; 2014 Apr; 36(4):277-83. PubMed ID: 23800410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is near-infrared spectroscopy clinically useful in the preterm infant?
    da Costa CS; Greisen G; Austin T
    Arch Dis Child Fetal Neonatal Ed; 2015 Nov; 100(6):F558-61. PubMed ID: 26215405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults.
    Alderliesten T; De Vis JB; Lemmers PM; van Bel F; Benders MJ; Hendrikse J; Petersen ET
    Neuroimage; 2014 Jan; 85 Pt 1():255-63. PubMed ID: 23859925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-domain vs continuous-wave near-infrared spectroscopy devices: a comparison of clinically viable monitors in controlled hypoxia.
    Davies DJ; Clancy M; Lighter D; Balanos GM; Lucas SJE; Dehghani H; Su Z; Forcione M; Belli A
    J Clin Monit Comput; 2017 Oct; 31(5):967-974. PubMed ID: 27778208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near infrared spectroscopy (NIRS) in children.
    Chakravarti S; Srivastava S; Mittnacht AJ
    Semin Cardiothorac Vasc Anesth; 2008 Mar; 12(1):70-9. PubMed ID: 18387980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in cerebral oxygenation and hemodynamics during cranial ultrasound in preterm infants.
    van Alfen-van der Velden AA; Claessen VP; Hopman JC; Klaessens JH; Sengers RC; Liem KD
    Brain Dev; 2009 Jun; 31(6):427-34. PubMed ID: 18838237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral oxygenation during different treatment strategies for a patent ductus arteriosus.
    Chock VY; Ramamoorthy C; Van Meurs KP
    Neonatology; 2011; 100(3):233-40. PubMed ID: 21701212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of near-infrared spectroscopy to monitor tissue oxygenation.
    Taylor DE; Simonson SG
    New Horiz; 1996 Nov; 4(4):420-5. PubMed ID: 8968975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain oxygenation monitoring during neonatal resuscitation of very low birth weight infants.
    Fuchs H; Lindner W; Buschko A; Almazam M; Hummler HD; Schmid MB
    J Perinatol; 2012 May; 32(5):356-62. PubMed ID: 21852771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients.
    Taussky P; O'Neal B; Daugherty WP; Luke S; Thorpe D; Pooley RA; Evans C; Hanel RA; Freeman WD
    Neurosurg Focus; 2012 Feb; 32(2):E2. PubMed ID: 22296679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of frequency-domain and continuous-wave near-infrared spectroscopy devices during the immediate transition.
    van Essen T; Goos TG; van Ballegooijen L; Pichler G; Urlesberger B; Reiss IKM; de Jonge RCJ
    BMC Pediatr; 2020 Feb; 20(1):94. PubMed ID: 32111176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates: a 24-h observational study.
    Koch HW; Hansen TG
    Paediatr Anaesth; 2016 Feb; 26(2):190-8. PubMed ID: 26725989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The light still shines, but not that brightly? The current status of perinatal near infrared spectroscopy.
    Nicklin SE; Hassan IA; Wickramasinghe YA; Spencer SA
    Arch Dis Child Fetal Neonatal Ed; 2003 Jul; 88(4):F263-8. PubMed ID: 12819155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy.
    Elwell CE; Henty JR; Leung TS; Austin T; Meek JH; Delpy DT; Wyatt JS
    Adv Exp Med Biol; 2005; 566():263-8. PubMed ID: 16594161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared spectroscopy in the fetus and neonate.
    Wolfberg AJ; du Plessis AJ
    Clin Perinatol; 2006 Sep; 33(3):707-28, viii. PubMed ID: 16950321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is near-infrared spectroscopy living up to its promises?
    Greisen G
    Semin Fetal Neonatal Med; 2006 Dec; 11(6):498-502. PubMed ID: 16959556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near infrared spectroscopy in children at high risk of low perfusion.
    Mittnacht AJ
    Curr Opin Anaesthesiol; 2010 Jun; 23(3):342-7. PubMed ID: 20421789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate.
    Wolf M; Greisen G
    Clin Perinatol; 2009 Dec; 36(4):807-34, vi. PubMed ID: 19944837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.