BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 17414671)

  • 1. Function and regulation of epithelial sodium transporters in the kidney of a salt-sensitive hypertensive rat model.
    Li J; Wang DH
    J Hypertens; 2007 May; 25(5):1065-72. PubMed ID: 17414671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys.
    Zhang M; Liu M; Wang W; Ren Z; Wang P; Xue Y; Wang X
    Hypertens Res; 2024 May; ():. PubMed ID: 38778170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a high-salt diet on TRPV-1-dependent renal nerve activity in Dahl salt-sensitive rats.
    Xie C; Wang DH
    Am J Nephrol; 2010; 32(3):194-200. PubMed ID: 20639627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a high-salt diet on MAP and expression levels of renal ENaCs and aquaporins in SHR.
    Ramachandran CD; Gholami K; Lam SK; Hoe SZ
    Exp Biol Med (Maywood); 2023 Oct; 248(20):1768-1779. PubMed ID: 37828834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-salt diet further impairs age-associated declines in cognitive, behavioral, and cardiovascular functions in male Fischer brown Norway rats.
    Chugh G; Asghar M; Patki G; Bohat R; Jafri F; Allam F; Dao AT; Mowrey C; Alkadhi K; Salim S
    J Nutr; 2013 Sep; 143(9):1406-13. PubMed ID: 23864508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Postgenomic and structural changes in the myocardia of Wistar rats fed a high-salt diet].
    Beresneva ON; Parastaeva MM; Ivanova GT; Zaraiskii MI; Bogdanova EO; Ognev OG; Ivanova AN; Kucher AG
    Vopr Pitan; 2023; 92(6):73-82. PubMed ID: 38198421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High sodium, rather than high blood pressure, induces immune cell activation and renal infiltration in ovariectomized adult Wistar rats.
    Vlachovsky SG; Azurmendi PJ; Oddo EM; Rodríguez RS; Di Ciano LA; Goette NP; Paz LA; Silberstein C; Ibarra FR
    Biochem Biophys Res Commun; 2024 Aug; 722():150147. PubMed ID: 38788356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity.
    Yang C; Isaeva E; Shimada S; Kurth T; Stumpf M; Zheleznova NN; Staruschenko A; Dash RK; Cowley AW
    Am J Physiol Renal Physiol; 2024 May; ():. PubMed ID: 38779754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A traditional Korean fermented food,
    Park JE; Han A; Mun EG; Cha YS
    Heliyon; 2024 May; 10(9):e30451. PubMed ID: 38726141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Responses of Normal Rat Kidneys to a High Salt Intake.
    Shimada S; Hoffmann BR; Yang C; Kurth T; Greene AS; Liang M; Dash RK; Cowley AW
    Function (Oxf); 2023; 4(5):zqad031. PubMed ID: 37575482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmentation of nitric oxide deficient hypertension by high salt diet is associated with reduced TNF-α receptor type 1 expression in the kidneys.
    Majid DSA; Prieto MC; Castillo A; Chamberlain C; Navar LG
    Am J Hypertens; 2024 May; ():. PubMed ID: 38780971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging.
    Pushpakumar S; Ahmad A; Ketchem CJ; Jose PA; Weinman EJ; Sen U; Lederer ED; Khundmiri SJ
    Life Sci; 2020 Feb; 243():117226. PubMed ID: 31904366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Thiazide Diuretic Arterial Pressure Reduction: The Search Continues.
    Rapoport RM; Soleimani M
    Front Pharmacol; 2019; 10():815. PubMed ID: 31543812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distal convoluted tubule.
    McCormick JA; Ellison DH
    Compr Physiol; 2015 Jan; 5(1):45-98. PubMed ID: 25589264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kidney and hypertension: pathogenesis of salt-sensitive hypertension.
    Shimosawa T; Mu S; Shibata S; Fujita T
    Curr Hypertens Rep; 2012 Oct; 14(5):468-72. PubMed ID: 22752520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteases, cystic fibrosis and the epithelial sodium channel (ENaC).
    Thibodeau PH; Butterworth MB
    Cell Tissue Res; 2013 Feb; 351(2):309-23. PubMed ID: 22729487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced salt sensitivity following shRNA silencing of neuronal TRPV1 in rat spinal cord.
    Yu SQ; Wang DH
    Acta Pharmacol Sin; 2011 Jun; 32(6):845-52. PubMed ID: 21642952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension.
    Mu S; Shimosawa T; Ogura S; Wang H; Uetake Y; Kawakami-Mori F; Marumo T; Yatomi Y; Geller DS; Tanaka H; Fujita T
    Nat Med; 2011 May; 17(5):573-80. PubMed ID: 21499270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.
    Vallon V; Schroth J; Lang F; Kuhl D; Uchida S
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F704-12. PubMed ID: 19570885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient receptor potential vanilloid channels in hypertension, inflammation, and end organ damage: an imminent target of therapy for cardiovascular disease?
    Wang DH
    Curr Opin Cardiol; 2008 Jul; 23(4):356-63. PubMed ID: 18520720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.