BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 17414908)

  • 21. Effect of changes in lordosis on mechanics of the lumbar spine-lumbar curvature in lifting.
    Shirazi-Adl A; Parnianpour M
    J Spinal Disord; 1999 Oct; 12(5):436-47. PubMed ID: 10549710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging.
    O'Connell GD; Johannessen W; Vresilovic EJ; Elliott DM
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2860-8. PubMed ID: 18246009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis.
    Schmidt H; Heuer F; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):270-8. PubMed ID: 17997207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of different artificial disc kinematics on spine biomechanics.
    Zander T; Rohlmann A; Bergmann G
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):135-42. PubMed ID: 19121822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The multidirectional bending properties of the human lumbar intervertebral disc.
    Spenciner D; Greene D; Paiva J; Palumbo M; Crisco J
    Spine J; 2006; 6(3):248-57. PubMed ID: 16651218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite-element simulation of changes in the fluid content of human lumbar discs. Mechanical and clinical implications.
    Shirazi-Adl A
    Spine (Phila Pa 1976); 1992 Feb; 17(2):206-12. PubMed ID: 1553592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The restoration of lumbar intervertebral disc load distribution: a comparison of three nucleus replacement technologies.
    Dahl MC; Ahrens M; Sherman JE; Martz EO
    Spine (Phila Pa 1976); 2010 Jul; 35(15):1445-53. PubMed ID: 20216342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disc arthroplasty design influences intervertebral kinematics and facet forces.
    Rousseau MA; Bradford DS; Bertagnoli R; Hu SS; Lotz JC
    Spine J; 2006; 6(3):258-66. PubMed ID: 16651219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic stresses on anisotropic annulus fibrosus of lumbar disk under compression, rotation and flexion in manual treatment.
    Chaudhry H; Ji Z; Shenoy N; Findley T
    J Bodyw Mov Ther; 2009 Apr; 13(2):182-91. PubMed ID: 19329054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element modeling of cervical laminectomy with graded facetectomy.
    Kumaresan S; Yoganandan N; Pintar FA; Voo LM; Cusick JF; Larson SJ
    J Spinal Disord; 1997 Feb; 10(1):40-6. PubMed ID: 9041495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Load displacement behavior of the human lumbo-sacral joint.
    McGlashen KM; Miller JA; Schultz AB; Andersson GB
    J Orthop Res; 1987; 5(4):488-96. PubMed ID: 3681523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement.
    Snyder JT; Tzermiadianos MN; Ghanayem AJ; Voronov LI; Rinella A; Dooris A; Carandang G; Renner SM; Havey RM; Patwardhan AG
    Spine (Phila Pa 1976); 2007 Dec; 32(26):2965-9. PubMed ID: 18091488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revision strategies for single- and two-level total disc arthroplasty procedures: a biomechanical perspective.
    Cunningham BW; Hu N; Beatson HJ; Serhan H; Sefter JC; McAfee PC
    Spine J; 2009 Sep; 9(9):735-43. PubMed ID: 19477694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Realistic loading conditions for upper body bending.
    Rohlmann A; Zander T; Rao M; Bergmann G
    J Biomech; 2009 May; 42(7):884-90. PubMed ID: 19268291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques.
    Bresnahan L; Ogden AT; Natarajan RN; Fessler RG
    Spine (Phila Pa 1976); 2009 Jan; 34(1):17-23. PubMed ID: 19127157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.