BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 17415142)

  • 1. Animal model for cholesteatoma induced in the gerbil: will the profiles of differentiation/growth-regulatory markers be similar to the clinical situation?
    Choufani G; Roper N; Delbrouck C; Hassid S; Gabius HJ
    Laryngoscope; 2007 Apr; 117(4):706-11. PubMed ID: 17415142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of patterns of expression of protein kinase C-alpha, -delta, -eta, -gamma and -zeta and their correlations to p53, galectin-3, the retinoic acid receptor-beta and the macrophage migration inhibitory factor (MIF) in human cholesteatomas.
    Ghanooni R; Decaestecker C; Simon P; Gabius HJ; Hassid S; Choufani G
    Hear Res; 2006 Apr; 214(1-2):7-16. PubMed ID: 16513304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of macrophage migration inhibitory factor (MIF) in human cholesteatomas and functional implications of correlations to recurrence status and to expression of matrix metalloproteinases-3/9, retinoic acid receptor-beta, and anti-apoptotic galectin-3.
    Choufani G; Ghanooni R; Decaestecker C; Delbrouck K; Simon P; Schüring MP; Zick Y; Hassid S; Gabius HJ; Kiss R
    Laryngoscope; 2001 Sep; 111(9):1656-62. PubMed ID: 11568623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesteatoma: spontaneous occurrence in the Mongolian gerbil Meriones unguiculatis.
    Chole RA; Henry KR; McGinn MD
    Am J Otol; 1981 Jan; 2(3):204-10. PubMed ID: 7282890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The expressions and correlations of RAR-beta receptors and galectin-8 in human middle ear cholesteatoma].
    Peng L; Cui Y; Liu A
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2004 Jul; 18(7):427-9. PubMed ID: 15499989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of apoptosis in external auditory canal cholesteatoma by hepatocyte growth factor/scatter factor.
    Naim R; Shen T; Riedel F; Bran G; Sadick H; Hormann K
    ORL J Otorhinolaryngol Relat Spec; 2005; 67(1):45-50. PubMed ID: 15753622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of phospholipase C-gamma1 in experimental cholesteatoma using Mongolian gerbils.
    Park K; Chun YM; Lee DH
    Acta Otolaryngol; 2001 Jun; 121(4):477-80. PubMed ID: 11508507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related increase of spontaneous aural cholesteatoma in the Mongolian gerbil.
    Henry KR; Chole RA; McGinn MD
    Arch Otolaryngol; 1983 Jan; 109(1):19-21. PubMed ID: 6848101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphologic and biologic changes of experimentally induced cholesteatoma in Mongolian gerbils with anticytokeratin and lectin study.
    Kim CS; Chung JW
    Am J Otol; 1999 Jan; 20(1):13-8. PubMed ID: 9918165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galectin-7 as a marker of cholesteatoma residue and its detection during surgery by an immunofluorescent method--a preliminary study.
    Takagi D; Hato N; Okada M; Hakuba N; Gyo K; Shigemoto K; Toda T; Ogasawara M; Kameda K
    Otol Neurotol; 2012 Apr; 33(3):396-9. PubMed ID: 22377647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal aberrations, profiles of expression of growth-related markers including galectins and environmental hazards in relation to the incidence of chondroid pulmonary hamartomas.
    Kayser K; Dünnwald D; Kazmierczak B; Bullerdiek J; Kaltner H; Zick Y; André S; Gabius HJ
    Pathol Res Pract; 2003; 199(9):589-98. PubMed ID: 14621194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tympanic membrane changes in experimental cholesteatoma in the gerbil.
    Larsson C; von Unge M; Bagger-Sjöbäck D
    Am J Otol; 1999 May; 20(3):309-16. PubMed ID: 10337970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Immunohistochemical discrimination of aggressivity between the cholesteatoma from different positions].
    Ma X; Yu LS; Xia RM
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2006 Aug; 41(8):574-8. PubMed ID: 17039796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoplasm staining patterns and cell cycle-associated expression of Ki-67 in middle ear cholesteatoma.
    Raynov AM; Moon SK; Choung YH; Hong SP; Park K
    Am J Otolaryngol; 2005; 26(5):296-301. PubMed ID: 16137526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of vascular endothelial growth factor in external auditory canal cholesteatoma.
    Naim R; Riedel F; Hormann K
    Int J Mol Med; 2003 May; 11(5):555-8. PubMed ID: 12684689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased expression of macrophage migration inhibitory factor during progression to hypopharyngeal squamous cell carcinoma.
    Cludts S; Decaestecker C; Johnson B; Lechien J; Leroy X; Kindt N; Kaltner H; André S; Gabius HJ; Saussez S
    Anticancer Res; 2010 Sep; 30(9):3313-9. PubMed ID: 20944103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In search of missing links in otology. III. Development of a new animal model for cholesteatoma.
    Hueb MM; Goycoolea MV; Muchow D; Duvall AJ; Paparella MM; Sheridan C
    Laryngoscope; 1993 Jul; 103(7):774-84. PubMed ID: 8341103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interleukin-1-containing cells in cholesteatoma of the middle ear].
    Schilling V; Bujia J; Negri B; Kastenbauer E
    Laryngorhinootologie; 1992 May; 71(5):271-5. PubMed ID: 1616549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gerbilline cholesteatoma development Part III. Increased proliferation index of basal keratinocytes of the tympanic membrane and external ear canal.
    Tinling SP; Chole RA
    Otolaryngol Head Neck Surg; 2006 Jul; 135(1):116-23. PubMed ID: 16815195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of S100A1 in external auditory canal cholesteatoma.
    Naim R; Hormann K
    Oncol Rep; 2006 Oct; 16(4):671-5. PubMed ID: 16969478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.