These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 17415489)

  • 1. Hydrogen storage in nanoporous carbon materials: myth and facts.
    Kowalczyk P; Hołyst R; Terrones M; Terrones H
    Phys Chem Chem Phys; 2007 Apr; 9(15):1786-92. PubMed ID: 17415489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale tubular vessels for storage of methane at ambient temperatures.
    Kowalczyk P; Solarz L; Do DD; Samborski A; MacElroy JM
    Langmuir; 2006 Oct; 22(21):9035-40. PubMed ID: 17014151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen storage in engineered carbon nanospaces.
    Burress J; Kraus M; Beckner M; Cepel R; Suppes G; Wexler C; Pfeifer P
    Nanotechnology; 2009 May; 20(20):204026. PubMed ID: 19420674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous nanotube network: a novel 3-D nanostructured material with enhanced hydrogen storage capacity.
    Tylianakis E; Dimitrakakis GK; Melchor S; Dobado JA; Froudakis GE
    Chem Commun (Camb); 2011 Feb; 47(8):2303-5. PubMed ID: 21152584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach.
    Lan A; Mukasyan A
    J Phys Chem B; 2005 Aug; 109(33):16011-6. PubMed ID: 16853032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen and methane sorption in dry and water-loaded multiwall carbon nanotubes.
    Zhou L; Sun Y; Yang Z; Zhou Y
    J Colloid Interface Sci; 2005 Sep; 289(2):347-51. PubMed ID: 16112222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies on hydrogen storage in aluminum nitride nanowires/tubes.
    Li Y; Zhou Z; Shen P; Zhang SB; Chen Z
    Nanotechnology; 2009 May; 20(21):215701. PubMed ID: 19423940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective D2 adsorption enhanced by the quantum sieving effect on entangled single-wall carbon nanotubes.
    Noguchi D; Tanaka H; Fujimori T; Kagita H; Hattori Y; Honda H; Urita K; Utsumi S; Wang ZM; Ohba T; Kanoh H; Hata K; Kaneko K
    J Phys Condens Matter; 2010 Aug; 22(33):334207. PubMed ID: 21386497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ar, CCl(4) and C(6)H(6) adsorption outside and inside of the bundles of multi-walled carbon nanotubes-simulation study.
    Furmaniak S; Terzyk AP; Gauden PA; Wesołowski RP; Kowalczyk P
    Phys Chem Chem Phys; 2009 Jul; 11(25):4982-95. PubMed ID: 19562128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: a combined ab initio and Monte Carlo investigation.
    Mpourmpakis G; Froudakis GE; Lithoxoos GP; Samios J
    J Chem Phys; 2007 Apr; 126(14):144704. PubMed ID: 17444729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH
    Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of metal catalyst in multi-walled carbon nanotubes with combination of air and hydrogen annealing followed by acid treatment.
    Li Q; Yuan D; Guan B; Lin Q; Wang X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5807-12. PubMed ID: 19198309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen and oxygen mixture adsorption on carbon nanotube bundles from molecular simulation.
    Jiang J; Sandler SI
    Langmuir; 2004 Dec; 20(25):10910-8. PubMed ID: 15568840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.