BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 17415490)

  • 1. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-compartment fructose/air biological fuel cell based on direct electron transfer.
    Wu X; Zhao F; Varcoe JR; Thumser AE; Avignone-Rossa C; Slade RC
    Biosens Bioelectron; 2009 Oct; 25(2):326-31. PubMed ID: 19674887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.
    Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G
    Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode.
    So K; Kawai S; Hamano Y; Kitazumi Y; Shirai O; Hibi M; Ogawa J; Kano K
    Phys Chem Chem Phys; 2014 Mar; 16(10):4823-9. PubMed ID: 24469104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor.
    Gallaway J; Wheeldon I; Rincon R; Atanassov P; Banta S; Barton SC
    Biosens Bioelectron; 2008 Mar; 23(8):1229-35. PubMed ID: 18096378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.
    Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell.
    Coman V; Vaz-Domínguez C; Ludwig R; Harreither W; Haltrich D; De Lacey AL; Ruzgas T; Gorton L; Shleev S
    Phys Chem Chem Phys; 2008 Oct; 10(40):6093-6. PubMed ID: 18846297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis.
    Tkac J; Svitel J; Vostiar I; Navratil M; Gemeiner P
    Bioelectrochemistry; 2009 Sep; 76(1-2):53-62. PubMed ID: 19329366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofuel cell based on direct bioelectrocatalysis.
    Ramanavicius A; Kausaite A; Ramanaviciene A
    Biosens Bioelectron; 2005 Apr; 20(10):1962-7. PubMed ID: 15741064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior.
    Rubenwolf S; Strohmeier O; Kloke A; Kerzenmacher S; Zengerle R; von Stetten F
    Biosens Bioelectron; 2010 Oct; 26(2):841-5. PubMed ID: 20627511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biofuel cell with enhanced performance by multilayer biocatalyst immobilized on highly ordered macroporous electrode.
    Deng L; Wang F; Chen H; Shang L; Wang L; Wang T; Dong S
    Biosens Bioelectron; 2008 Oct; 24(2):329-33. PubMed ID: 18495469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition.
    Vaz-Dominguez C; Campuzano S; Rüdiger O; Pita M; Gorbacheva M; Shleev S; Fernandez VM; De Lacey AL
    Biosens Bioelectron; 2008 Dec; 24(4):531-7. PubMed ID: 18585029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes.
    E Ferapontova E; Gorton L
    Bioelectrochemistry; 2005 Apr; 66(1-2):55-63. PubMed ID: 15833703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells.
    Miyake T; Yoshino S; Yamada T; Hata K; Nishizawa M
    J Am Chem Soc; 2011 Apr; 133(13):5129-34. PubMed ID: 21391588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular design of laccase cathode for direct electron transfer in a biofuel cell.
    Martinez-Ortiz J; Flores R; Vazquez-Duhalt R
    Biosens Bioelectron; 2011 Jan; 26(5):2626-31. PubMed ID: 21145724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase.
    Hamano Y; Tsujimura S; Shirai O; Kano K
    Bioelectrochemistry; 2012 Dec; 88():114-7. PubMed ID: 22917965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Bioanal Chem; 2018 May; 410(14):3253-3264. PubMed ID: 29564502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes.
    Kontani R; Tsujimura S; Kano K
    Bioelectrochemistry; 2009 Sep; 76(1-2):10-3. PubMed ID: 19345156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes.
    Treu BL; Minteer SD
    Bioelectrochemistry; 2008 Nov; 74(1):73-7. PubMed ID: 18760973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.