These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17415769)

  • 1. Time dependent mechanical properties of bone cement. An in vitro study over one year.
    Nottrott M; Mølster AO; Gjerdet NR
    J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):416-21. PubMed ID: 17415769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation.
    Boger A; Wheeler K; Montali A; Gruskin E
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of bone cements: are current preclinical specifications adequate?
    Nottrott M; Mølster AO; Moldestad IO; Walsh WR; Gjerdet NR
    Acta Orthop; 2008 Dec; 79(6):826-31. PubMed ID: 19085502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan].
    Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.
    Alge DL; Chu TM
    J Biomed Mater Res A; 2010 Aug; 94(2):547-55. PubMed ID: 20186776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical properties: barium sulfate-containing cement versus iodine-containing cement.
    Lewis G; van Hooy-Corstjens CS; Bhattaram A; Koole LH
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):77-87. PubMed ID: 15786447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new concept for more biocompliant bone cements for vertebroplasty and kyphoplasty.
    Hu X; Zhai X; Hirt T
    Macromol Biosci; 2009 Feb; 9(2):195-202. PubMed ID: 19127603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive mechanical properties and cytocompatibility of bone-compliant, linoleic acid-modified bone cement in a bovine model.
    López A; Mestres G; Karlsson Ott M; Engqvist H; Ferguson SJ; Persson C; Helgason B
    J Mech Behav Biomed Mater; 2014 Apr; 32():245-256. PubMed ID: 24508711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium phosphate cement composites in revision hip arthroplasty.
    Speirs AD; Oxland TR; Masri BA; Poursartip A; Duncan CP
    Biomaterials; 2005 Dec; 26(35):7310-8. PubMed ID: 16023190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrylic bone cements: influence of time and environment on physical properties.
    Nottrott M
    Acta Orthop Suppl; 2010 Jun; 81(341):1-27. PubMed ID: 20486859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pigmentation on the mechanical and polymerization characteristics of bone cement.
    Liacouras PC; Owen JR; Jiranek WA; Wayne JS
    J Arthroplasty; 2006 Jun; 21(4):606-11. PubMed ID: 16781416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of bone cements incorporated with montmorillonite.
    Kwon SY; Cho EH; Kim SS
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):276-84. PubMed ID: 17385224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.