These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17416202)

  • 21. Off-line multidimensional high performance thin-layer chromatography for fractionation of Japanese knotweed rhizome bark extract and isolation of flavan-3-ols, proanthocyanidins and anthraquinones.
    Jug U; Vovk I; Glavnik V; Makuc D; Naumoska K
    J Chromatogr A; 2021 Jan; 1637():461802. PubMed ID: 33383239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variations in the chemical composition and content of salicylic glycosides in the bark of Salix purpurea from natural locations and their significance for breeding.
    Sulima P; Krauze-Baranowska M; Przyborowski JA
    Fitoterapia; 2017 Apr; 118():118-125. PubMed ID: 28315389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Qualitative analysis and HPLC isolation and identification of procyanidins from Vicia faba.
    Merghem R; Jay M; Brun N; Voirin B
    Phytochem Anal; 2004; 15(2):95-9. PubMed ID: 15116939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of flavan-3-ols and procyanidins on UVC-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in isolated DNA.
    Ottaviani JI; Carrasquedo F; Keen CL; Lazarus SA; Schmitz HH; Fraga CG
    Arch Biochem Biophys; 2002 Oct; 406(2):203-8. PubMed ID: 12361708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea arabica) by thiolysis-high-performance liquid chromatography.
    Ramirez-Coronel MA; Marnet N; Kolli VS; Roussos S; Guyot S; Augur C
    J Agric Food Chem; 2004 Mar; 52(5):1344-9. PubMed ID: 14995144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A chemically defined 2,3-trans procyanidin fraction from willow bark causes redox-sensitive endothelium-dependent relaxation in porcine coronary arteries.
    Kaufeld AM; Pertz HH; Kolodziej H
    J Nat Prod; 2014 Jul; 77(7):1607-14. PubMed ID: 24957134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid preparation of procyanidins B2 and C1 from Granny Smith apples by using low pressure column chromatography and identification of their oligomeric procyanidins.
    Xiao JS; Liu L; Wu H; Xie BJ; Yang EN; Sun ZD
    J Agric Food Chem; 2008 Mar; 56(6):2096-101. PubMed ID: 18298060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UPLC-Q-TOF-MS and NMR identification of structurally different A-type procyanidins from peanut skin and their inhibitory effect on acrylamide.
    Zhao L; Yan F; Lu Q; Tang C; Wang X; Liu R
    J Sci Food Agric; 2022 Dec; 102(15):7062-7071. PubMed ID: 35690888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica.
    Hammerbacher A; Paetz C; Wright LP; Fischer TC; Bohlmann J; Davis AJ; Fenning TM; Gershenzon J; Schmidt A
    Plant Physiol; 2014 Apr; 164(4):2107-22. PubMed ID: 24550241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyphenolic constituents of Cynomorium songaricum Rupr. and antibacterial effect of polymeric proanthocyanidin on methicillin-resistant Staphylococcus aureus.
    Jin S; Eerdunbayaer ; Doi A; Kuroda T; Zhang G; Hatano T; Chen G
    J Agric Food Chem; 2012 Jul; 60(29):7297-305. PubMed ID: 22747497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans.
    Wiese S; Esatbeyoglu T; Winterhalter P; Kruse HP; Winkler S; Bub A; Kulling SE
    Mol Nutr Food Res; 2015 Apr; 59(4):610-21. PubMed ID: 25546356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis].
    Jiang X; Liu Y; Wu Y; Tan H; Meng F; Wang YS; Li M; Zhao L; Liu L; Qian Y; Gao L; Xia T
    Sci Rep; 2015 Mar; 5():8742. PubMed ID: 25735226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Commercial Proanthocyanidins. Part 6: Sulfitation of Flavan-3-Ols Catechin and Epicatechin, and Procyanidin B-3.
    Noreljaleel AEM; Wilhelm A; Bonnet SL
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33126408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon.
    Monagas M; Gómez-Cordovés C; Bartolomé B; Laureano O; Ricardo da Silva JM
    J Agric Food Chem; 2003 Oct; 51(22):6475-81. PubMed ID: 14558765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography.
    Köhler N; Wray V; Winterhalter P
    J Chromatogr A; 2008 Jan; 1177(1):114-25. PubMed ID: 18054944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.
    Es-Safi NE; Guyot S; Ducrot PH
    J Agric Food Chem; 2006 Sep; 54(19):6969-77. PubMed ID: 16968050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-performance liquid chromatographic purification of oligomeric procyanidins, trimers up to nonamers, derived from the bark of Jatoba (Hymenaea courbaril).
    Sasaki K; Matsukura Y; Shijima K; Miyake M; Fujiwara D; Konishi Y
    Biosci Biotechnol Biochem; 2009 Jun; 73(6):1274-9. PubMed ID: 19502743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flavan-3-ols from the rhizomes of Drynaria fortunei.
    Liang YH; Ye M; Yang WZ; Qiao X; Wang Q; Yang HJ; Wang XL; Guo DA
    Phytochemistry; 2011 Oct; 72(14-15):1876-82. PubMed ID: 21737107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gallocatechin biosynthesis via a flavonoid 3',5'-hydroxylase is a defense response in Norway spruce against infection by the bark beetle-associated sap-staining fungus Endoconidiophora polonica.
    Hammerbacher A; Raguschke B; Wright LP; Gershenzon J
    Phytochemistry; 2018 Apr; 148():78-86. PubMed ID: 29421514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of commercial proanthocyanidins. Part 3: the chemical composition of wattle (Acacia mearnsii) bark extract.
    Venter PB; Senekal ND; Kemp G; Amra-Jordaan M; Khan P; Bonnet SL; van der Westhuizen JH
    Phytochemistry; 2012 Nov; 83():153-67. PubMed ID: 22917955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.