These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17416212)

  • 1. TASK-like potassium channels and oxygen sensing in the carotid body.
    Buckler KJ
    Respir Physiol Neurobiol; 2007 Jul; 157(1):55-64. PubMed ID: 17416212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscarinic modulation of TASK-like background potassium channel in rat carotid body chemoreceptor cells.
    Ortiz FC; Varas R
    Brain Res; 2010 Apr; 1323():74-83. PubMed ID: 20153302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of TASK-like K+ channels in oxygen sensing in the carotid body.
    Buckler KJ; Williams BA; Orozco RV; Wyatt CN
    Novartis Found Symp; 2006; 272():73-85; discussion 85-94, 131-40. PubMed ID: 16686430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing.
    Buckler KJ
    Pflugers Arch; 2015 May; 467(5):1013-25. PubMed ID: 25623783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK-like K+ current.
    Xu F; Tse FW; Tse A
    J Neurochem; 2007 Jun; 101(5):1284-93. PubMed ID: 17498241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of TASK-1 in human pulmonary artery smooth muscle cells.
    Olschewski A; Li Y; Tang B; Hanze J; Eul B; Bohle RM; Wilhelm J; Morty RE; Brau ME; Weir EK; Kwapiszewska G; Klepetko W; Seeger W; Olschewski H
    Circ Res; 2006 Apr; 98(8):1072-80. PubMed ID: 16574908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translating blood-borne stimuli: chemotransduction in the carotid body.
    Kumar P; Phil D
    Sheng Li Xue Bao; 2007 Apr; 59(2):128-32. PubMed ID: 17437033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mitochondrial poisons on glutathione redox potential and carotid body chemoreceptor activity.
    Gomez-Niño A; Agapito MT; Obeso A; Gonzalez C
    Respir Physiol Neurobiol; 2009 Jan; 165(1):104-11. PubMed ID: 18996500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen sensitive Kv channels in the carotid body.
    López-López JR; Pérez-García MT
    Respir Physiol Neurobiol; 2007 Jul; 157(1):65-74. PubMed ID: 17442633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxic responses of arterial chemoreceptors in rabbits are primarily mediated by leak K channels.
    Kobayashi N; Yamamoto Y
    Adv Exp Med Biol; 2010; 669():195-9. PubMed ID: 20217348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O2 sensing by recombinant TWIK-related halothane-inhibitable K+ channel-1 background K+ channels heterologously expressed in human embryonic kidney cells.
    Campanucci VA; Brown ST; Hudasek K; O'kelly IM; Nurse CA; Fearon IM
    Neuroscience; 2005; 135(4):1087-94. PubMed ID: 16154284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells.
    Buckler KJ
    Pflugers Arch; 2012 Apr; 463(5):743-54. PubMed ID: 22419174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of chemoreceptor sensitivity in the carotid body: the role of presynaptic sensory nerves.
    McDonald DM
    Fed Proc; 1980 Jul; 39(9):2627-35. PubMed ID: 6105093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters?
    Prabhakar NR
    Exp Physiol; 2006 Jan; 91(1):17-23. PubMed ID: 16239252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells.
    Ortega-Sáenz P; Pardal R; García-Fernandez M; López-Barneo J
    J Physiol; 2003 May; 548(Pt 3):789-800. PubMed ID: 12626666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for TREK-like tandem-pore domain channels in intrapulmonary chemoreceptor chemotransduction.
    Bina RW; Hempleman SC
    Respir Physiol Neurobiol; 2007 May; 156(2):120-31. PubMed ID: 17071144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glomerulosa cell--a unique sensor of extracellular K+ concentration.
    Spät A
    Mol Cell Endocrinol; 2004 Mar; 217(1-2):23-6. PubMed ID: 15134796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of K₂p channels in stimulus-secretion coupling.
    Kim D; Kang D
    Pflugers Arch; 2015 May; 467(5):1001-11. PubMed ID: 25476848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.