BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17416346)

  • 1. Mutation in the SH1 helix reduces the activation energy of the ATP-induced conformational transition of myosin.
    Iwai S; Chaen S
    Biochem Biophys Res Commun; 2007 May; 357(1):325-9. PubMed ID: 17416346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.
    Mesentean S; Koppole S; Smith JC; Fischer S
    J Mol Biol; 2007 Mar; 367(2):591-602. PubMed ID: 17275022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol reactivity as a sensor of rotation of the converter in myosin.
    Onishi H; Nitanai Y
    Biochem Biophys Res Commun; 2008 Apr; 369(1):115-23. PubMed ID: 18068118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dictyostelium myosin II mutations that uncouple the converter swing and ATP hydrolysis cycle.
    Sasaki N; Ohkura R; Sutoh K
    Biochemistry; 2003 Jan; 42(1):90-5. PubMed ID: 12515542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.
    Koppole S; Smith JC; Fischer S
    J Mol Biol; 2006 Aug; 361(3):604-16. PubMed ID: 16859703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of dynamical correlations within the myosin motor domain by the normal mode analysis of an elastic network model.
    Zheng W; Brooks B
    J Mol Biol; 2005 Feb; 346(3):745-59. PubMed ID: 15713460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural coupling between ATPase activation and recovery stroke in the myosin II motor.
    Koppole S; Smith JC; Fischer S
    Structure; 2007 Jul; 15(7):825-37. PubMed ID: 17637343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A point mutation in the SH1 helix alters elasticity and thermal stability of myosin II.
    Iwai S; Hanamoto D; Chaen S
    J Biol Chem; 2006 Oct; 281(41):30736-44. PubMed ID: 16901894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic conformational changes due to the ATP hydrolysis in the motor domain of myosin: 10-ns molecular dynamics simulations.
    Kawakubo T; Okada O; Minami T
    Biophys Chem; 2009 Apr; 141(1):75-86. PubMed ID: 19176270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of structural changes in the relay loop and SH3 domain of myosin.
    van Duffelen M; Chrin LR; Berger CL
    Biochem Biophys Res Commun; 2005 Apr; 329(2):563-72. PubMed ID: 15737623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A myosin II mutation uncouples ATPase activity from motility and shortens step size.
    Murphy CT; Rock RS; Spudich JA
    Nat Cell Biol; 2001 Mar; 3(3):311-5. PubMed ID: 11231583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies on myosin II: communication between distant protein domains.
    Gulick AM; Rayment I
    Bioessays; 1997 Jul; 19(7):561-9. PubMed ID: 9230689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography.
    Málnási-Csizmadia A; Woolley RJ; Bagshaw CR
    Biochemistry; 2000 Dec; 39(51):16135-46. PubMed ID: 11123942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural change and nucleotide dissociation of Myosin motor domain: dual go model simulation.
    Takagi F; Kikuchi M
    Biophys J; 2007 Dec; 93(11):3820-7. PubMed ID: 17704146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission of force and displacement within the myosin molecule.
    Ohki T; Mikhailenko SV; Morales MF; Onishi H; Mochizuki N
    Biochemistry; 2004 Nov; 43(43):13707-14. PubMed ID: 15504033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps.
    Suzuki Y; Yasunaga T; Ohkura R; Wakabayashi T; Sutoh K
    Nature; 1998 Nov; 396(6709):380-3. PubMed ID: 9845076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in the SH1 helix alter the thermal properties of myosin II.
    Shibata K; Koyama T; Inde S; Iwai S; Chaen S
    Biophys Physicobiol; 2017; 14():67-73. PubMed ID: 28630813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-induced transconformation of myosin revealed by determining three-dimensional positions of fluorophores from fluorescence energy transfer measurements.
    Yasunaga T; Suzuki Y; Ohkura R; Sutoh K; Wakabayashi T
    J Struct Biol; 2000 Oct; 132(1):6-18. PubMed ID: 11121303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins.
    Suzuki Y
    Methods; 2000 Dec; 22(4):355-63. PubMed ID: 11133241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of domain-domain interaction for conformational change and functional ATP hydrolysis in myosin.
    Ito K; Uyeda TQ; Suzuki Y; Sutoh K; Yamamoto K
    J Biol Chem; 2003 Aug; 278(33):31049-57. PubMed ID: 12756255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.