These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P; Visoottiviseth P Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [TBL] [Abstract][Full Text] [Related]
3. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Visoottiviseth P; Francesconi K; Sridokchan W Environ Pollut; 2002; 118(3):453-61. PubMed ID: 12009144 [TBL] [Abstract][Full Text] [Related]
4. Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation. Anderson L; Walsh MM Sci Total Environ; 2007 Jul; 379(2-3):263-5. PubMed ID: 17113631 [TBL] [Abstract][Full Text] [Related]
5. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Silva Gonzaga MI; Santos JA; Ma LQ Environ Pollut; 2006 Sep; 143(2):254-60. PubMed ID: 16442683 [TBL] [Abstract][Full Text] [Related]
6. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Gonzaga MI; Santos JA; Ma LQ Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547 [TBL] [Abstract][Full Text] [Related]
7. Arsenic hyperaccumulation by Pteris vittata and Pityrogramma calomelanos: a comparative study of uptake efficiency in arsenic-treated soils and waters. Yong JW; Tan SN; Ng YF; Low KK; Peh SF; Chua JC; Lim AA Water Sci Technol; 2010; 61(12):3041-9. PubMed ID: 20555200 [TBL] [Abstract][Full Text] [Related]
8. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
9. Effect of soil pH on as hyperaccumulation capacity in fern species, Pityrogramma calomelanos. Anh BT; Kim DD; Kuschk P; Tua TV; Hue NT; Minh NN J Environ Biol; 2013 Mar; 34(2):237-42. PubMed ID: 24620585 [TBL] [Abstract][Full Text] [Related]
10. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Gonzaga MI; Ma LQ; Santos JA; Matias MI Sci Total Environ; 2009 Aug; 407(16):4711-6. PubMed ID: 19476972 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation potential of Pityrogramma calomelanos var. austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site. Niazi NK; Singh B; Van Zwieten L; Kachenko AG Int J Phytoremediation; 2011 Oct; 13(9):912-32. PubMed ID: 21972513 [TBL] [Abstract][Full Text] [Related]
12. The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Chopra BK; Bhat S; Mikheenko IP; Xu Z; Yang Y; Luo X; Chen H; van Zwieten L; Lilley RM; Zhang R Sci Total Environ; 2007 Jun; 378(3):331-42. PubMed ID: 17407787 [TBL] [Abstract][Full Text] [Related]
13. Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chintakovid W; Visoottiviseth P; Khokiattiwong S; Lauengsuchonkul S Chemosphere; 2008 Feb; 70(8):1532-7. PubMed ID: 17904614 [TBL] [Abstract][Full Text] [Related]
14. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207 [TBL] [Abstract][Full Text] [Related]
15. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages. Santos JA; Gonzaga MI; Ma LQ; Srivastava M Environ Pollut; 2008 Jul; 154(2):306-11. PubMed ID: 18045757 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Niazi NK; Singh B; Van Zwieten L; Kachenko AG Environ Sci Pollut Res Int; 2012 Sep; 19(8):3506-15. PubMed ID: 22529007 [TBL] [Abstract][Full Text] [Related]
17. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Wei CY; Chen TB Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests. Mandal A; Purakayastha TJ; Patra AK; Sanyal SK Int J Phytoremediation; 2012 Dec; 14(10):978-95. PubMed ID: 22908659 [TBL] [Abstract][Full Text] [Related]
19. Three new arsenic hyperaccumulating ferns. Srivastava M; Ma LQ; Santos JA Sci Total Environ; 2006 Jul; 364(1-3):24-31. PubMed ID: 16371231 [TBL] [Abstract][Full Text] [Related]
20. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Tu C; Ma LQ J Environ Qual; 2002; 31(2):641-7. PubMed ID: 11931457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]