These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17416431)

  • 1. Dystroglycan: a possible mediator for reducing congenital muscular dystrophy?
    Sciandra F; Gawlik KI; Brancaccio A; Durbeej M
    Trends Biotechnol; 2007 Jun; 25(6):262-8. PubMed ID: 17416431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrant glycosylation of alpha-dystroglycan and congenital muscular dystrophies.
    Endo T
    Acta Myol; 2005 Oct; 24(2):64-9. PubMed ID: 16550917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of defective glycosylation in congenital muscular dystrophy.
    Schachter H; Vajsar J; Zhang W
    Glycoconj J; 2004; 20(5):291-300. PubMed ID: 15229394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disrupted mechanical stability of the dystrophin-glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice.
    Peter AK; Miller G; Crosbie RH
    J Cell Sci; 2007 Mar; 120(Pt 6):996-1008. PubMed ID: 17311848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dystroglycan glycosylation and muscular dystrophy.
    Moore CJ; Hewitt JE
    Glycoconj J; 2009 Apr; 26(3):349-57. PubMed ID: 18773291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of dystroglycan cleavage causes muscular dystrophy in transgenic mice.
    Jayasinha V; Nguyen HH; Xia B; Kammesheidt A; Hoyte K; Martin PT
    Neuromuscul Disord; 2003 Jun; 13(5):365-75. PubMed ID: 12798792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic profiling of dystroglycan-associated proteins in wild type, mdx, and Galgt2 transgenic mouse skeletal muscle.
    Yoon JH; Johnson E; Xu R; Martin LT; Martin PT; Montanaro F
    J Proteome Res; 2012 Sep; 11(9):4413-24. PubMed ID: 22775139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dystroglycan matrix receptor function in cardiac myocytes is important for limiting activity-induced myocardial damage.
    Michele DE; Kabaeva Z; Davis SL; Weiss RM; Campbell KP
    Circ Res; 2009 Nov; 105(10):984-93. PubMed ID: 19797173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylation defects in muscular dystrophies.
    Haliloğlu G; Topaloğlu H
    Curr Opin Neurol; 2004 Oct; 17(5):521-7. PubMed ID: 15367856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy.
    Beedle AM; Turner AJ; Saito Y; Lueck JD; Foltz SJ; Fortunato MJ; Nienaber PM; Campbell KP
    J Clin Invest; 2012 Sep; 122(9):3330-42. PubMed ID: 22922256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies.
    Barresi R; Michele DE; Kanagawa M; Harper HA; Dovico SA; Satz JS; Moore SA; Zhang W; Schachter H; Dumanski JP; Cohn RD; Nishino I; Campbell KP
    Nat Med; 2004 Jul; 10(7):696-703. PubMed ID: 15184894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy.
    Sciandra F; Bigotti MG; Giardina B; Bozzi M; Brancaccio A
    Biomed Res Int; 2015; 2015():635792. PubMed ID: 26380289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective glycosylation in muscular dystrophy.
    Muntoni F; Brockington M; Blake DJ; Torelli S; Brown SC
    Lancet; 2002 Nov; 360(9343):1419-21. PubMed ID: 12424008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan.
    Stevens E; Carss KJ; Cirak S; Foley AR; Torelli S; Willer T; Tambunan DE; Yau S; Brodd L; Sewry CA; Feng L; Haliloglu G; Orhan D; Dobyns WB; Enns GM; Manning M; Krause A; Salih MA; Walsh CA; Hurles M; Campbell KP; Manzini MC; ; Stemple D; Lin YY; Muntoni F
    Am J Hum Genet; 2013 Mar; 92(3):354-65. PubMed ID: 23453667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage.
    Martin PT
    Nat Clin Pract Neurol; 2006 Apr; 2(4):222-30. PubMed ID: 16932553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP).
    Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V
    Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice.
    Foltz SJ; Modi JN; Melick GA; Abousaud MI; Luan J; Fortunato MJ; Beedle AM
    PLoS One; 2016; 11(1):e0147049. PubMed ID: 26751696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies.
    Cirak S; Foley AR; Herrmann R; Willer T; Yau S; Stevens E; Torelli S; Brodd L; Kamynina A; Vondracek P; Roper H; Longman C; Korinthenberg R; Marrosu G; Nürnberg P; ; Michele DE; Plagnol V; Hurles M; Moore SA; Sewry CA; Campbell KP; Voit T; Muntoni F
    Brain; 2013 Jan; 136(Pt 1):269-81. PubMed ID: 23288328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of new dystroglycan complexes in skeletal muscle.
    Johnson EK; Li B; Yoon JH; Flanigan KM; Martin PT; Ervasti J; Montanaro F
    PLoS One; 2013; 8(8):e73224. PubMed ID: 23951345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Congenital muscular dystrophy: molecular and cellular aspects.
    Jimenez-Mallebrera C; Brown SC; Sewry CA; Muntoni F
    Cell Mol Life Sci; 2005 Apr; 62(7-8):809-23. PubMed ID: 15868406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.