These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. How do endosymbionts become organelles? Understanding early events in plastid evolution. Bhattacharya D; Archibald JM; Weber AP; Reyes-Prieto A Bioessays; 2007 Dec; 29(12):1239-46. PubMed ID: 18027391 [TBL] [Abstract][Full Text] [Related]
3. Endosymbiosis: double-take on plastid origins. Archibald JM Curr Biol; 2006 Sep; 16(17):R690-2. PubMed ID: 16950094 [TBL] [Abstract][Full Text] [Related]
4. Organelle evolution: what's in a name? Keeling PJ; Archibald JM Curr Biol; 2008 Apr; 18(8):R345-7. PubMed ID: 18430636 [TBL] [Abstract][Full Text] [Related]
5. The difference between organelles and endosymbionts. Theissen U; Martin W Curr Biol; 2006 Dec; 16(24):R1016-7; author reply R1017-8. PubMed ID: 17174902 [No Abstract] [Full Text] [Related]
6. A secondary symbiosis in progress? Okamoto N; Inouye I Science; 2005 Oct; 310(5746):287. PubMed ID: 16224014 [TBL] [Abstract][Full Text] [Related]
7. Chromalveolates and the evolution of plastids by secondary endosymbiosis. Keeling PJ J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769 [TBL] [Abstract][Full Text] [Related]
8. The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles? Bodył A; Mackiewicz P; Stiller JW Trends Microbiol; 2007 Jul; 15(7):295-6. PubMed ID: 17537638 [TBL] [Abstract][Full Text] [Related]
9. The presence and localization of thioredoxins in diatoms, unicellular algae of secondary endosymbiotic origin. Weber T; Gruber A; Kroth PG Mol Plant; 2009 May; 2(3):468-77. PubMed ID: 19825630 [TBL] [Abstract][Full Text] [Related]
10. Plastid division in an evolutionary context. Tveitaskog AE; Maple J; Møller SG Biol Chem; 2007 Sep; 388(9):937-42. PubMed ID: 17696777 [TBL] [Abstract][Full Text] [Related]
11. [Origination and evolution of plastids]. Mukhina VS Zh Obshch Biol; 2014; 75(5):329-52. PubMed ID: 25782273 [TBL] [Abstract][Full Text] [Related]
12. Ancient invasions: from endosymbionts to organelles. Dyall SD; Brown MT; Johnson PJ Science; 2004 Apr; 304(5668):253-7. PubMed ID: 15073369 [TBL] [Abstract][Full Text] [Related]
13. Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Margulis L; Bermudes D Symbiosis; 1985; 1():101-24. PubMed ID: 11543608 [TBL] [Abstract][Full Text] [Related]
14. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
15. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Nowack EC; Melkonian M; Glöckner G Curr Biol; 2008 Mar; 18(6):410-8. PubMed ID: 18356055 [TBL] [Abstract][Full Text] [Related]
16. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes. Grauvogel C; Brinkmann H; Petersen J Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012 [TBL] [Abstract][Full Text] [Related]
18. Microbiology. Seeing green and red in diatom genomes. Dagan T; Martin W Science; 2009 Jun; 324(5935):1651-2. PubMed ID: 19556490 [No Abstract] [Full Text] [Related]
19. Functional Relationship between a Dinoflagellate Host and Its Diatom Endosymbiont. Hehenberger E; Burki F; Kolisko M; Keeling PJ Mol Biol Evol; 2016 Sep; 33(9):2376-90. PubMed ID: 27297471 [TBL] [Abstract][Full Text] [Related]