These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 17416554)

  • 1. Homeostasis of exercise hyperpnea and optimal sensorimotor integration: the internal model paradigm.
    Poon CS; Tin C; Yu Y
    Respir Physiol Neurobiol; 2007 Oct; 159(1):1-13; discussion 14-20. PubMed ID: 17416554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of breathing during exercise.
    Forster HV; Haouzi P; Dempsey JA
    Compr Physiol; 2012 Jan; 2(1):743-77. PubMed ID: 23728984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral chemoreceptor activity on exercise-induced hyperpnea in human.
    Osanai S; Takahashi T; Nakao S; Takahashi M; Nakano H; Kikuchi K
    Adv Exp Med Biol; 2006; 580():251-5; discussion 351-9. PubMed ID: 16683728
    [No Abstract]   [Full Text] [Related]  

  • 4. Layers of exercise hyperpnea: modulation and plasticity.
    Mitchell GS; Babb TG
    Respir Physiol Neurobiol; 2006 Apr; 151(2-3):251-66. PubMed ID: 16530024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization character of inspiratory neural drive.
    Poon CS; Lin SL; Knudson OB
    J Appl Physiol (1985); 1992 May; 72(5):2005-17. PubMed ID: 1601812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive neural network that subserves optimal homeostatic control of breathing.
    Poon CS
    Ann Biomed Eng; 1993; 21(5):501-8. PubMed ID: 8239090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise hyperpnea in the duck without intrapulmonary chemoreceptor involvement.
    Kiley JP; Fedde MR
    Respir Physiol; 1983 Sep; 53(3):355-65. PubMed ID: 6417746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.
    Miyamoto T; Manabe K; Ueda S; Nakahara H
    Exp Physiol; 2018 May; 103(5):748-760. PubMed ID: 29509982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction among humoral and neurogenic mechanisms in ventilation control during exercise.
    Ursino M; Magosso E
    Ann Biomed Eng; 2004 Sep; 32(9):1286-99. PubMed ID: 15493515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of augmented exercise hyperpnea in chronic heart failure and dead space loading.
    Poon CS; Tin C
    Respir Physiol Neurobiol; 2013 Mar; 186(1):114-30. PubMed ID: 23274121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of peripheral and central chemoreflex activation on the isopnoeic rating of breathing in exercising humans.
    Ward SA; Whipp BJ
    J Physiol; 1989 Apr; 411():27-43. PubMed ID: 2515273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Supraspinal locomotor centers do/do not contribute significantly to the hyperpnea of dynamic exercise in humans".
    Poon CS
    J Appl Physiol (1985); 2006 Apr; 100(4):1417. PubMed ID: 16646135
    [No Abstract]   [Full Text] [Related]  

  • 13. "Supraspinal locomotor centers do/do not contribute significantly to the hyperpnea of dynamic exercise in humans".
    Secher NH
    J Appl Physiol (1985); 2006 Apr; 100(4):1417. PubMed ID: 16540716
    [No Abstract]   [Full Text] [Related]  

  • 14. Contribution of acid-base changes to control of breathing during exercise.
    Forster HV; Pan LG
    Can J Appl Physiol; 1995 Sep; 20(3):380-94. PubMed ID: 8541800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical consequences of altered chemoreflex control.
    Plataki M; Sands SA; Malhotra A
    Respir Physiol Neurobiol; 2013 Nov; 189(2):354-63. PubMed ID: 23681082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral and central chemoreceptor control of ventilation during exercise in humans.
    Ward SA
    Can J Appl Physiol; 1994 Sep; 19(3):305-33. PubMed ID: 8000356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of peripheral chemoreceptor drive in exercise hyperpnea in humans.
    Kobayashi T; Sakakibara Y; Masuda A; Ohdaira T; Honda Y
    Appl Human Sci; 1996 Nov; 15(6):259-66. PubMed ID: 9008979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiology and pathophysiology of exercise hyperpnea.
    Dempsey JA; Neder JA; Phillips DB; O'Donnell DE
    Handb Clin Neurol; 2022; 188():201-232. PubMed ID: 35965027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Control of breathing during exercise].
    Yoshida T; Fukuba Y
    Ann Physiol Anthropol; 1992 Sep; 11(5):479-93. PubMed ID: 1418166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Regulation of respiration during muscular exertion].
    Shik LL
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1985; (6):18-29. PubMed ID: 2862923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.