These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 1741661)

  • 1. Simulator for evaluating shoulder motion as a command source for FES grasp restoration systems.
    Durfee WK; Mariano TR; Zahradnik JL
    Arch Phys Med Rehabil; 1991 Dec; 72(13):1088-94. PubMed ID: 1741661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of command algorithms for control of upper-extremity neural prostheses.
    Humbert SD; Snyder SA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):94-101. PubMed ID: 12236452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of shoulder movement as a command control source.
    Johnson MW; Peckham PH
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):876-85. PubMed ID: 2227974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive feedback for use with FES upper extremity neuroprostheses.
    Riso RR; Ignagni AR; Keith MW
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):29-38. PubMed ID: 2026429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of the input-output properties of neuroprosthetic hand grasps.
    Memberg WD; Crago PE
    J Rehabil Res Dev; 2000; 37(1):11-21. PubMed ID: 10847568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional evaluation of natural sensory feedback incorporated in a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):439-47. PubMed ID: 15234680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task.
    Kaliki RR; Davoodi R; Loeb GE
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):792-802. PubMed ID: 22287229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of input-output properties and control of neuroprosthetic hand grasp.
    Hines AE; Owens NE; Crago PE
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):610-23. PubMed ID: 1601442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of hand grasp using functional neuromuscular stimulation.
    Kilgore KL; Peckham PH; Thrope GB; Keith MW; Gallaher-Stone KA
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):761-70. PubMed ID: 2787284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumented objects for quantitative evaluation of hand grasp.
    Memberg WD; Crago PE
    J Rehabil Res Dev; 1997 Jan; 34(1):82-90. PubMed ID: 9021628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback regulation of hand grasp opening and contact force during stimulation of paralyzed muscle.
    Crago PE; Nakai RJ; Chizeck HJ
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):17-28. PubMed ID: 2026428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid system for upper limb movement restoration in quadriplegics.
    Varoto R; Barbarini ES; Cliquet A
    Artif Organs; 2008 Sep; 32(9):725-9. PubMed ID: 18684204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of natural sensory feedback in a portable control system for a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):449-58. PubMed ID: 15234681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated tuning of a closed-loop hand grasp neuroprosthesis.
    Lemay MA; Crago PE; Katorgi M; Chapman GJ
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):675-85. PubMed ID: 8244428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional neuromuscular stimulation neuroprostheses for the tetraplegic hand.
    Keith MW; Peckham PH; Thrope GB; Buckett JR; Stroh KC; Menger V
    Clin Orthop Relat Res; 1988 Aug; (233):25-33. PubMed ID: 3042233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of training set on prediction of elbow trajectory from shoulder trajectory during reaching to targets.
    Kaliki RR; Davoodi R; Loeb GE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5483-6. PubMed ID: 17946704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An EMG-controlled grasping system for tetraplegics.
    Saxena S; Nikolić S; Popović D
    J Rehabil Res Dev; 1995 Feb; 32(1):17-24. PubMed ID: 7760263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprosthetics of the upper extremity--clinical application in spinal cord injury and future perspectives.
    Rupp R; Gerner HJ
    Biomed Tech (Berl); 2004 Apr; 49(4):93-8. PubMed ID: 15171589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity.
    Hoshimiya N; Naito A; Yajima M; Handa Y
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):754-60. PubMed ID: 2787283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless wearable controller for upper-limb neuroprosthesis.
    Wheeler CA; Peckham PH
    J Rehabil Res Dev; 2009; 46(2):243-56. PubMed ID: 19533538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.