BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17416613)

  • 1. Scattering of exciting light by live cells in fluorescence confocal imaging: phototoxic effects and relevance for FRAP studies.
    Dobrucki JW; Feret D; Noatynska A
    Biophys J; 2007 Sep; 93(5):1778-86. PubMed ID: 17416613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mercury arc lamp-based multi-color confocal real time imaging system for cellular structure and function.
    Saito K; Kobayashi K; Tani T; Nagai T
    Cell Struct Funct; 2008; 33(1):133-41. PubMed ID: 18685226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live-cell nucleocytoplasmic protein shuttle assay utilizing laser confocal microscopy and FRAP.
    Howell JL; Truant R
    Biotechniques; 2002 Jan; 32(1):80-2, 84, 86-7. PubMed ID: 11808703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous photobleaching in vesicles and living cells: a measure of diffusion and compartmentation.
    Delon A; Usson Y; Derouard J; Biben T; Souchier C
    Biophys J; 2006 Apr; 90(7):2548-62. PubMed ID: 16428281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging adult C. elegans live using light-sheet microscopy.
    VAN Krugten J; Taris KH; Peterman EJG
    J Microsc; 2021 Mar; 281(3):214-223. PubMed ID: 32949409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryo/fetal topographical analysis by fluorescence microscopy and confocal laser scanning microscopy.
    Zucker RM; Rogers JM
    Methods Mol Biol; 2000; 135():203-9. PubMed ID: 10791317
    [No Abstract]   [Full Text] [Related]  

  • 7. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP.
    Bancaud A; Huet S; Rabut G; Ellenberg J
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top90. PubMed ID: 21123431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors.
    Yu M; Li F; Chen Z; Hu H; Zhan C; Yang H; Huang C
    Anal Chem; 2009 Feb; 81(3):930-5. PubMed ID: 19125565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging subcellular scattering contrast by using combined optical coherence and multiphoton microscopy.
    Tang S; Sun CH; Krasieva TB; Chen Z; Tromberg BJ
    Opt Lett; 2007 Mar; 32(5):503-5. PubMed ID: 17392902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium.
    Saloma C; Palmes-Saloma C; Kondoh H
    Phys Med Biol; 1998 Jun; 43(6):1741-59. PubMed ID: 9651037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved signal to noise ratio.
    Greger K; Neetz MJ; Reynaud EG; Stelzer EH
    Opt Express; 2011 Oct; 19(21):20743-50. PubMed ID: 21997084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching.
    Gribbon P; Hardingham TE
    Biophys J; 1998 Aug; 75(2):1032-9. PubMed ID: 9675204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and mobility of bacterial proteins by confocal microscopy and fluorescence recovery after photobleaching.
    Mullineaux CW
    Methods Mol Biol; 2007; 390():3-15. PubMed ID: 17951677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattered light fluorescence microscopy: imaging through turbid layers.
    Vellekoop IM; Aegerter CM
    Opt Lett; 2010 Apr; 35(8):1245-7. PubMed ID: 20410981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure.
    Digman MA; Sengupta P; Wiseman PW; Brown CM; Horwitz AR; Gratton E
    Biophys J; 2005 May; 88(5):L33-6. PubMed ID: 15792971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of Kinetic Models by a Combination of Microirradiation and Fluorescence Photobleaching.
    Lengert L; Lengert N; Drossel B; Cardoso MC; Muster B; Nowak D; Rapp A
    Biophys J; 2015 Oct; 109(8):1551-64. PubMed ID: 26488646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live cell fluorescence microscopy techniques.
    Galdeen SA; North AJ
    Methods Mol Biol; 2011; 769():205-22. PubMed ID: 21748678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A line scanning confocal fluorescent microscope using a CMOS rolling shutter as an adjustable aperture.
    Mei E; Fomitchov PA; Graves R; Campion M
    J Microsc; 2012 Sep; 247(3):269-76. PubMed ID: 22906014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimizing light exposure with the programmable array microscope.
    Caarls W; Rieger B; De Vries AH; Arndt-Jovin DJ; Jovin TM
    J Microsc; 2011 Jan; 241(1):101-10. PubMed ID: 21118211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macro-microscopic fluorescence of human bladder cancer using hypericin fluorescence cystoscopy and laser confocal microscopy.
    Olivo M; Lau W; Manivasager V; Tan PH; Soo KC; Cheng C
    Int J Oncol; 2003 Oct; 23(4):983-90. PubMed ID: 12963977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.