These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
733 related articles for article (PubMed ID: 17416690)
41. Membrane insertion of the Bacillus thuringiensis Cry1Ab toxin: single mutation in domain II block partitioning of the toxin into the brush border membrane. Nair MS; Liu XS; Dean DH Biochemistry; 2008 May; 47(21):5814-22. PubMed ID: 18457427 [TBL] [Abstract][Full Text] [Related]
42. Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis. Padilla C; Pardo-López L; de la Riva G; Gómez I; Sánchez J; Hernandez G; Nuñez ME; Carey MP; Dean DH; Alzate O; Soberón M; Bravo A Appl Environ Microbiol; 2006 Jan; 72(1):901-7. PubMed ID: 16391132 [TBL] [Abstract][Full Text] [Related]
43. Membrane proteins of Aedes aegypti larvae bind toxins Cry4B and Cry11A of Bacillus thuringiensis ssp. israelensis. Krieger IV; Revina LP; Kostina LI; Buzdin AA; Zalunin IA; Chestukhina GG; Stepanov VM Biochemistry (Mosc); 1999 Oct; 64(10):1163-8. PubMed ID: 10561564 [TBL] [Abstract][Full Text] [Related]
44. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. López-Diaz JA; Cantón PE; Gill SS; Soberón M; Bravo A Environ Microbiol; 2013 Nov; 15(11):3030-9. PubMed ID: 24112611 [TBL] [Abstract][Full Text] [Related]
45. A 104 kDa Aedes aegypti aminopeptidase N is a putative receptor for the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Chen J; Likitvivatanavong S; Aimanova KG; Gill SS Insect Biochem Mol Biol; 2013 Dec; 43(12):1201-8. PubMed ID: 24128608 [TBL] [Abstract][Full Text] [Related]
46. Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells. Anaya P; Onofre J; Torres-Quintero MC; Sánchez J; Gill SS; Bravo A; Soberón M Insect Biochem Mol Biol; 2020 Apr; 119():103317. PubMed ID: 31978588 [TBL] [Abstract][Full Text] [Related]
47. In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cells of Anopheles gambiae larvae (Diptera: Culicidae). Ravoahangimalala O; Charles JF FEBS Lett; 1995 Apr; 362(2):111-5. PubMed ID: 7720855 [TBL] [Abstract][Full Text] [Related]
48. Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. Cohen S; Albeck S; Ben-Dov E; Cahan R; Firer M; Zaritsky A; Dym O J Mol Biol; 2011 Nov; 413(4):804-14. PubMed ID: 21959261 [TBL] [Abstract][Full Text] [Related]
49. The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. Dementiev A; Board J; Sitaram A; Hey T; Kelker MS; Xu X; Hu Y; Vidal-Quist C; Chikwana V; Griffin S; McCaskill D; Wang NX; Hung SC; Chan MK; Lee MM; Hughes J; Wegener A; Aroian RV; Narva KE; Berry C BMC Biol; 2016 Aug; 14(1):71. PubMed ID: 27576487 [TBL] [Abstract][Full Text] [Related]
50. A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Manceva SD; Pusztai-Carey M; Russo PS; Butko P Biochemistry; 2005 Jan; 44(2):589-97. PubMed ID: 15641784 [TBL] [Abstract][Full Text] [Related]
51. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. Xu X; Wu Y J Invertebr Pathol; 2008 Jan; 97(1):27-32. PubMed ID: 17681529 [TBL] [Abstract][Full Text] [Related]
53. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Valtierra-de-Luis D; Villanueva M; Lai L; Williams T; Caballero P Toxins (Basel); 2020 May; 12(6):. PubMed ID: 32485828 [No Abstract] [Full Text] [Related]
54. Functional analysis of two processed fragments of Bacillus thuringiensis Cry11A toxin. Yamagiwa M; Sakagawa K; Sakai H Biosci Biotechnol Biochem; 2004 Mar; 68(3):523-8. PubMed ID: 15056882 [TBL] [Abstract][Full Text] [Related]
55. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Gómez I; Pardo-López L; Muñoz-Garay C; Fernandez LE; Pérez C; Sánchez J; Soberón M; Bravo A Peptides; 2007 Jan; 28(1):169-73. PubMed ID: 17145116 [TBL] [Abstract][Full Text] [Related]
56. The insecticidal crystal protein Cry2Ab10 from Bacillus thuringiensis: cloning, expression, and structure simulation. Lin Y; Fang G; Cai F Biotechnol Lett; 2008 Mar; 30(3):513-9. PubMed ID: 17973088 [TBL] [Abstract][Full Text] [Related]
57. Molecular cloning and characterization of a novel mosquitocidal protein gene from Bacillus thuringiensis subsp. fukuokaensis. Lee HK; Gill SS Appl Environ Microbiol; 1997 Dec; 63(12):4664-70. PubMed ID: 9406385 [TBL] [Abstract][Full Text] [Related]
58. Leucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut. Leonardi MG; Caccia S; González-Cabrera J; Ferré J; Giordana B J Membr Biol; 2006; 214(3):157-64. PubMed ID: 17558532 [TBL] [Abstract][Full Text] [Related]
59. Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity. Cantón PE; López-Díaz JA; Gill SS; Bravo A; Soberón M Peptides; 2014 Mar; 53():286-91. PubMed ID: 24512949 [TBL] [Abstract][Full Text] [Related]
60. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome. Jiang J; Huang Y; Shu C; Soberón M; Bravo A; Liu C; Song F; Lai J; Zhang J Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389549 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]