These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17417701)

  • 1. Secondary transport of amino acids in prokaryotes.
    Jung H; Pirch T; Hilger D
    J Membr Biol; 2006; 213(2):119-33. PubMed ID: 17417701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and mechanism of a Na+-independent amino acid transporter.
    Shaffer PL; Goehring A; Shankaranarayanan A; Gouaux E
    Science; 2009 Aug; 325(5943):1010-4. PubMed ID: 19608859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid secondary transporters: toward a common transport mechanism.
    Schweikhard ES; Ziegler CM
    Curr Top Membr; 2012; 70():1-28. PubMed ID: 23177982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What is an antidepressant binding site doing in a bacterial transporter?
    Rudnick G
    ACS Chem Biol; 2007 Sep; 2(9):606-9. PubMed ID: 17894444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a general amino acid permease from Hebeloma cylindrosporum.
    Wipf D; Benjdia M; Tegeder M; Frommer WB
    FEBS Lett; 2002 Sep; 528(1-3):119-24. PubMed ID: 12297290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A competitive inhibitor traps LeuT in an open-to-out conformation.
    Singh SK; Piscitelli CL; Yamashita A; Gouaux E
    Science; 2008 Dec; 322(5908):1655-61. PubMed ID: 19074341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters.
    Vangelatos I; Vlachakis D; Sophianopoulou V; Diallinas G
    Mol Membr Biol; 2009 Aug; 26(5):356-70. PubMed ID: 19670073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins.
    Saelensminde G; Halskau Ø; Helland R; Willassen NP; Jonassen I
    Extremophiles; 2007 Jul; 11(4):585-96. PubMed ID: 17429573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function.
    Beuming T; Shi L; Javitch JA; Weinstein H
    Mol Pharmacol; 2006 Nov; 70(5):1630-42. PubMed ID: 16880288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry. An almost-complete movie.
    Diallinas G
    Science; 2008 Dec; 322(5908):1644-5. PubMed ID: 19074336
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure and function of sodium-coupled GABA and glutamate transporters.
    Kanner BI
    J Membr Biol; 2006; 213(2):89-100. PubMed ID: 17417704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transporters for amino acids in plant cells: some functions and many unknowns.
    Tegeder M
    Curr Opin Plant Biol; 2012 Jun; 15(3):315-21. PubMed ID: 22366488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters.
    Loland CJ
    Biochim Biophys Acta; 2015 Mar; 1850(3):500-10. PubMed ID: 24769398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Millisecond dynamics of an unlabeled amino acid transporter.
    Matin TR; Heath GR; Huysmans GHM; Boudker O; Scheuring S
    Nat Commun; 2020 Oct; 11(1):5016. PubMed ID: 33024106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prokaryotic glycosylation.
    Schäffer C; Graninger M; Messner P
    Proteomics; 2001 Feb; 1(2):248-61. PubMed ID: 11680871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of membrane transport proteins for vitamins in bacteria and archaea.
    Jaehme M; Slotboom DJ
    Biochim Biophys Acta; 2015 Mar; 1850(3):565-76. PubMed ID: 24836521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea.
    Mulligan C; Fischer M; Thomas GH
    FEMS Microbiol Rev; 2011 Jan; 35(1):68-86. PubMed ID: 20584082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
    Zumft WG
    J Inorg Biochem; 2005 Jan; 99(1):194-215. PubMed ID: 15598502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Rieske proteins in prokaryotes: where and why?
    Schneider D; Schmidt CL
    Biochim Biophys Acta; 2005 Nov; 1710(1):1-12. PubMed ID: 16271700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative modelling of amino acid transport and homeostasis in mammalian cells.
    Gauthier-Coles G; Vennitti J; Zhang Z; Comb WC; Xing S; Javed K; Bröer A; Bröer S
    Nat Commun; 2021 Sep; 12(1):5282. PubMed ID: 34489418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.